Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
10,548 result(s) for "Friction welding"
Sort by:
A Comprehensive Review on Optimal Welding Conditions for Friction Stir Welding of Thermoplastic Polymers and Their Composites
Friction stir welding (FSW) and friction stir spot welding (FSSW) techniques are becoming widely popular joining techniques because of their increasing potential applications in automotive, aerospace, and other structural industries. These techniques have not only successfully joined similar and dissimilar metal and polymer parts but have also successfully developed polymer-metallic hybrid joints. This study classifies the literature available on the FSW and FSSW of thermoplastic polymers and polymer composites on the basis of joining materials (similar or dissimilar), joint configurations, tooling conditions, medium conditions, and study types. It provides a state-of-the-art and detailed review of the experimental studies available on the FSW and FSSW between similar thermoplastics. The mechanical properties of FSW (butt- and lap-joint configurations) and FSSW weld joints depend on various factors. These factors include the welding process parameters (tool rotational speed, tool traverse speed, tool tilt angle, etc.), base material, tool geometry (pin and shoulder size, pin profile, etc.) and tool material, and medium conditions (submerged, non-submerged, heat-assisted tooling, cooling-assisted tooling). Because of the dependence on many factors, it is difficult to optimize the welding conditions to obtain a high-quality weld joint with superior mechanical properties. The general guidelines are established by reviewing the available literature. These guidelines, if followed, will help to achieve high-quality weld joints with least defects and superior mechanical properties. Apart from parametric-based studies, the statistical-based studies (e.g., analysis of variance (ANOVA)-based studies) are covered, which helps with the determination of the influential parameters that affect the FSW and FSSW weld joint strength. Also, the optimal ranges of the most influential process parameters for different thermoplastic materials are established. The current work on the development of general guidelines and determination of influential parameters and their operating ranges from published literature can help with designing smart future experimental studies for obtaining the global optimum welding conditions. The gaps in the available literature and recommendations for future studies are also discussed.
An investigation into optimizing the friction stir welding factors (FSWF) for yellow brass
Friction stir welding (FSW) is a green, environmentally amicable, and solid-state joining technology. In this research, FSW is successfully executed for yellow/naval brass 405–20 that has ample applications in plumbers’ flanges, fittings, ornamental, hardware, and ship trim. Moreover, both the naval brass 405–20 and the tool material (M2 HSS) utilized are novel. The effect of two friction stir weld factors (FSWF), rotational speed (RS) and traverse speed (TS), was found on three output parameters, i.e., weld temperature, weld strength, and weld hardness. Three levels of both rotational speed (1300, 1450, and 1600) rpm and traverse speed (40, 50, and 60) mm/s were selected in this work to execute full factorial design of experiments (DOEs). The highest weld temperature developed while FSW was found to be 63.72% of melting point of base metal. A significant improvement in friction stir weld strength (FSWS) was also measured that was found to be 106.37% of the base brass strength. Finally, weld hardness was measured which was found to be 87.80% of original brass hardness. Optimal FSW factors were found to be 1450 rpm and 60 mm/min resulting interestingly in optimal temperature, optimal strength, and optimal hardness. Rotational speed (RS) was also found to be significant only towards the weld temperature at the friction stir weld zone (FSWZ) with the highest percent contribution (PCR) of 65.69%. Moreover, a numerical validation for weld temperature only was also performed along with empirical validations each for temperature, strength, and hardness of joint. The investigation of FSWZ using possible magnification settings of coordinate measuring machine (CMM) and scanning electron microscope (SEM) resulted in findings such as regular circular patterns, thin burrs of welded brass, crazing pores initiating the cracks leading further to joint failure, and likelihood of dezincification within brass.
Effect of Friction Stir Welding Techniques and Parameters on Polymers Joint Efficiency—A Critical Review
The objective of current work is to analyse the influence of different welding techniques and welding parameters on the morphology and mechanical strength of friction stir welds (FSW) in polymers, based on data collected in the literature. In the current work, only articles that provide data on the joint efficiency, or sufficient information to estimate it are considered. The process using conventional tool is presented and compared with new procedures developed for FSW of polymers, such as those using tools with heated stationary shoulder, preheating of the polymer or double-side passage of the tool. The influence of tool rotational speed (w), welding speed (v), tilt angle and geometry of the pin are discussed. This work focuses on the polymers most studied in the literature, polyethylene (PE) and polypropylene (PP). The use of external heating and tools with stationary shoulder proved to be of great importance in improving the surface finish, reducing defects, and increasing the mechanical strength of the welds. The increase in the w/v ratio increased the joint efficiency, especially when using conventional tools on PE. A trend was obtained for conventional FSW, but it was difficult to establish mathematical relationships, because of the variability of welding conditions.
Review on Friction Welding of Similar/Dissimilar Metals
the most commonly used technique for welding metals is fusion welding. But, these days friction welding procedures are used widely since welding of metals are made much easier. And, those welds impossible to weld by fusion welding can be produced by the process of friction welding. The industries related to automobile, submarine engineering, aerospace and heavy duty vehicle manufacturers are in huge demand for new applications and in need for new material combinations. In the present study, various research work done in the friction welding field is reviewed.
Development and optimization of a prediction system model for mechanical properties in rotary friction-welded polyamide joints using the SVM approach and GA optimization
The objective of this experimental study is to utilize rotary friction welding (FW) for assembling similar polyamide materials. The application of the SVM approach enables the development of a predictive model for estimating mechanical properties in RFW processes. Furthermore, the optimization of RFW parameters through GA proves pivotal in selecting optimal welding conditions, providing a variety of choices. The welding parameters considered in this study included rotation speed at five levels and traverse speed at three levels. The strength of the welded samples was characterized by a tensile test. Additionally, temperature measurements were taken to determine the maximum temperature in the joint area. The results demonstrated the dependence of tensile strength and maximum temperature on the rotation speed. Maximum tensile strength is achieved at an optimal rotation speed. Moreover, analysis of variance (ANOVA) indicates that rotation speed is the parameter most influenced by tensile strength.
Friction welding parameter for AA6063 using ANFIS prediction
It is generally accepted in the field of friction welding that the parameters of rotary friction welding affect mechanical properties. Accurate input is crucial at each process stage, especially in smart factories that use automated machines to produce workpieces. The input for each parameter must be precise. This research proposes a prediction parameter for rotary friction welding for aluminium round bar AA6063, which uses the adaptive-network-based fuzzy inference system (ANFIS) method. The condition, which includes rotational speed, welding time, and friction pressure was used to input the membership function. The ultimate tensile strength of the weld joint was used for the output of ANFIS. The results show that prediction can contribute to industrial applications by determining which parameters can be adapted to the application control for the automatic rotary friction welding process in a Smart Factory.
Advanced Analytical Methods of the Analysis of Friction Stir Welding Process (FSW) of Aluminum Sheets Used in the Automotive Industry
The paper provides general information on selected methods of joining aluminum sheets. The main focus is on the strength of the friction stir welding connection and the energy consumption of the process. The practical part of the study used aluminum alloy 2024-T3, the most commonly used alloy in the automotive industry. The study consisted of the FSW welding of two pieces of overlapping sheet metal, using different process parameters. The thickness of the sheet used was 1 mm. After the welding was completed, the test specimens were broken on a testing machine. During the tests, the appropriate process parameters were selected at which the weld showed the highest strength. The effect of implementing the FSW process should be to increase the efficiency of sheet-metal joining. It should also result in a reduction in the energy intensity of the process, which will translate into the lower production cost of the final product. Strength tests were carried out on eighteen samples of joined sheets. The best results were obtained at a feed rate of 100 (mm/min) and a rotational speed of 900 (rpm). It can also be seen that friction welding is an efficient and low-emission way of joining metals. Through the analysis, it can be concluded that in order to perform one meter of satisfactory welding, CO2 emissions will be approximately 310 g. These are calculations based on data published by the National Balancing and Emissions Management Centre from 2019. Analyzing the 2019 data from the Society of Automobile Manufacturers, it is safe to say that the potential for implementing the FSW method in the automotive industry is huge.
Solid-state welding of UFG copper rods with conical face by means of friction heat impulse
Solid-state friction welding of ultra-fine grained materials (UFG) is a complex process to implement. Exceeding the recrystallization temperature during the process causes degradation of the material’s properties. The process temperature can be reduced by limiting the heat power. Using standard friction welding machines and parameters, it is difficult to achieve an appropriately low heat power. The welding tests of Cu-ETP copper with an UFG structure were carried out on a prototype rotary friction welding machine. It enables welding materials with extremely short friction times and high pressure forces. A given set of non-standard/sharp parameters influences the generated heat power. Its characteristic course is called the friction heat impulse (FHI). The use of FHI allows the energy to be reduced to the minimum necessary to obtain a joint. In order to obtain better joint conditions in a short welding time, a conical surface was used on one of the welded samples. The friction welding tests carried out using the FHI method and a prototype machine showed that the average hardness value of the joints increased slightly from 129 HV0.2 to 130 HV0.2. Additionally, the tensile strength remained at the same level as the UFG base material. The results proved that it is possible to weld UFG copper rods with conical face under recrystallization temperature without any signs of degradation of the UFG structure.
Joining of Dissimilar Al and Mg Metal Alloys by Friction Stir Welding
In engineering applications, such as automobile, marine, aerospace, and railway, lightweight alloys of aluminum (Al) and magnesium (Mg) ensure design fitness for fuel economy, better efficiency, and overall cost reduction. Friction stir welding (FSW) for joining dissimilar materials has been considered better than the conventional fusion welding process because of metallurgical concerns. In this study, dissimilar joints were made between the AA6061 (A), AZ31B (B), and AZ91D (C) combinations based on the varying advancing side (AS) and retreating side (RS). The dissimilar joints prepared by the FSW process were further characterized by tensile testing, impact testing, corrosion testing, fracture, and statistical and cost analysis. The results revealed a maximum tensile strength of 192.39 MPa in AZ91 and AZ31B, maximum yield strength of 134.38 MPa in a combination of AA6061 and AZ91, maximum hardness of 114 Hv in AA6061 and AZ31B, and lowest corrosion rate of 7.03 mV/A in AA6061 and AZ31B. The results of the properties were supported by photomicrographic fracture analysis by scanning electron microscopy (SEM) observations. Further, the performance of dissimilar joints was statistically analyzed and prioritized for preference by similarity to the ideal solution (TOPSIS) method.
Effective Range of FSSW Parameters for High Load-Carrying Capacity of Dissimilar Steel A283M-C/Brass CuZn40 Joints
In the current study, a 2 mm thick low-carbon steel sheet (A283M—Grade C) was joined with a brass sheet (CuZn40) of 1 mm thickness using friction stir spot welding (FSSW). Different welding parameters including rotational speeds of 1000, 1250, and 1500 rpm, and dwell times of 5, 10, 20, and 30 s were applied to explore the effective range of parameters to have FSSW joints with high load-carrying capacity. The joint quality of the friction stir spot-welded (FSSWed) dissimilar materials was evaluated via visual examination, tensile lap shear test, hardness test, and macro- and microstructural investigation using SEM. Moreover, EDS analysis was applied to examine the mixing at the interfaces of the dissimilar materials. Heat input calculation for the FSSW of steel–brass was found to be linearly proportional with the number of revolutions per spot joint, with maximum heat input obtained of 11 kJ at the number of revolutions of 500. The temperature measurement during FSSW showed agreement with the heat input dependence on the number of revolution. However, at the same revolutions of 500, it was found that the higher rotation speed of 1500 rpm resulted in higher temperature of 583 °C compared to 535 °C at rotation speed of 1000 rpm. This implies the significant effect for the rotation speed in the increase of temperature. The macro investigations of the friction stir spot-welded joints transverse sections showed sound joints at the different investigated parameters with significant joint ligament between the steel and brass. FSSW of steel/brass joints with a number of revolutions ranging between 250 to 500 revolutions per spot at appropriate tool speed range (1000–1500 rpm) produces joints with high load-carrying capacity from 4 kN to 7.5 kN. The hardness showed an increase in the carbon steel (lower sheet) with maximum of 248 HV and an increase of brass hardness at mixed interface between brass and steel with significant reduction in the stir zone hardness. Microstructural investigation of the joint zone showed mechanical mixing between steel and brass with the steel extruded from the lower sheet into the upper brass sheet.