Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
11,022
result(s) for
"Fruit - microbiology"
Sort by:
Microbiome and Metabolome Illustrate the Correlations Between Endophytes and Flavor Metabolites in Passiflora ligularis Fruit Juice
2025
This study investigates the interplay between volatile and non-volatile flavor metabolites and endophytic microbial communities during three developmental stages of Passiflora ligularis fruit juice. Using bioinformatics and metabolomics, we characterize microbial diversity and metabolic variations to understand flavor development. A total of 1490 bacterial and 1158 fungal operational taxonomic units (OTUs) were identified. Young fruits had higher microbial diversity, dominated by Proteobacteria and Firmicutes (bacteria) and Ascomycota and Basidiomycota (fungi). As the fruit matured, Proteobacteria increased while Firmicutes decreased, indicating that microbial succession is tied to development. Metabolomic profiling identified 87 volatile and 1002 non-volatile metabolites, with distinct chemical classes varying across stages. Saturated hydrocarbons and fatty alcohols were the main volatile metabolites, while organic acids and lipids among non-volatile metabolites showed stage-dependent changes, influencing flavor complexity. Correlation analysis showed microbial-flavor interactions: Proteobacteria negatively correlated with metabolites, while Firmicutes positively correlated with metabolites. Ascomycota positively correlated with volatile metabolites, whereas Basidiomycota showed an inverse relationship, highlighting their differential contributions to flavor biosynthesis. This study enhances understanding of microbial and metabolic factors shaping P. ligularis fruit flavor, highlighting the importance of microbial influence on fruit metabolomics. The findings suggest the potential for microbiome engineering to improve flavor quality, aiding postharvest management and industrial processing in the food and beverage industry.
Journal Article
Pest Management and Ochratoxin A Contamination in Grapes: A Review
by
Palumbo, Roberta
,
Mazzoni, Emanuele
,
Battilani, Paola
in
Animals
,
Aspergillus - metabolism
,
Aspergillus carbonarius’ OTA
2020
Ochratoxin A (OTA) is the most toxic member of ochratoxins, a group of toxic secondary metabolites produced by fungi. The most relevant species involved in OTA production in grapes is Aspergillus carbonarius. Berry infection by A. carbonarius is enhanced by damage to the skin caused by abiotic and biotic factors. Insect pests play a major role in European vineyards, and Lepidopteran species such as the European grapevine moth Lobesia botrana are undoubtedly crucial. New scenarios are also emerging due to the introduction and spread of allochthonous pests as well as climate change. Such pests may be involved in the dissemination of OTA producing fungi even if confirmation is still lacking and further studies are needed. An OTA predicting model is available, but it should be integrated with models aimed at forecasting L. botrana phenology and demography in order to improve model reliability.
Journal Article
Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea
by
Petrasch, Stefan
,
Blanco‐Ulate, Barbara
,
van Kan, Jan A. L.
in
Biological control
,
Botrytis cinerea
,
Breeding
2019
Summary The fungal pathogen Botrytis cinerea causes grey mould, a commercially damaging disease of strawberry. This pathogen affects fruit in the field, storage, transport and market. The presence of grey mould is the most common reason for fruit rejection by growers, shippers and consumers, leading to significant economic losses. Here, we review the biology and epidemiology of the pathogen, mechanisms of infection and the genetics of host plant resistance. The development of grey mould is affected by environmental and genetic factors; however, little is known about how B. cinerea and strawberry interact at the molecular level. Despite intensive efforts, breeding strawberry for resistance to grey mould has not been successful, and the mechanisms underlying tolerance to B. cinerea are poorly understood and under‐investigated. Current control strategies against grey mould include pre‐ and postharvest fungicides, yet they are generally ineffective and expensive. In this review, we examine available research on horticultural management, chemical and biological control of the pathogen in the field and postharvest storage, and discuss their relevance for integrative disease management. Additionally, we identify and propose approaches for increasing resistance to B. cinerea in strawberry by tapping into natural genetic variation and manipulating host factors via genetic engineering and genome editing.
Journal Article
Penicillium expansum: biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit
by
Luciano‐Rosario, Dianiris
,
Jurick, Wayne M.
,
Keller, Nancy P.
in
Agricultural practices
,
Animal behavior
,
Apples
2020
Blue mould, caused primarily by Penicillium expansum, is a major threat to the global pome fruit industry, causing multimillion‐dollar losses annually. The blue mould fungus negatively affects fruit quality, thereby reducing fresh fruit consumption, and significantly contributes to food loss. P. expansum also produces an array of mycotoxins that are detrimental to human health. Management options are limited and the emergence of fungicide‐resistant Penicillium spp. makes disease management difficult, therefore new approaches and tools are needed to combat blue mould in storage. This species profile comprises a comprehensive literature review of this aggressive pathogen associated with pomes (apple, pear, quince), focusing on biology, mechanisms of disease, control, genomics, and the newest developments in disease management. Taxonomy Penicillium expansum Link 1809. Domain Eukaryota, Kingdom Fungi, Phylum Ascomycota, Subphylum Pezizomycotina, Class Eurotiomycetes, Subclass: Eurotiomycetidae, Order Eurotiales; Family Trichocomaceae, Genus Penicillium, Species expansum. Biology A wide host range necrotrophic postharvest pathogen that requires a wound (e.g., stem pull, punctures, bruises, shoulder cracks) or natural openings (e.g., lenticel, stem end, calyx sinus) to gain ingress and infect. Toxins Patulin, citrinin, chaetoglobosins, communesins, roquefortine C, expansolides A and B, ochratoxin A, penitrem A, rubratoxin B, and penicillic acid. Host range Primarily apples, European pear, Asian pear, medlar, and quince. Blue mould has also been reported on stone fruits (cherry, plum, peach), small fruits (grape, strawberry, kiwi), and hazel nut. Disease symptoms Blue mould initially appears as light tan to dark brown circular lesions with a defined margin between the decayed and healthy tissues. The decayed tissue is soft and watery, and blue‐green spore masses appear on the decayed area, starting at the infection site and radiating outward as the decayed area ages. Disease control Preharvest fungicides with postharvest activity and postharvest fungicides are primarily used to control decay. Orchard and packinghouse sanitation methods are also critical components of an integrated pest management strategy. Useful websites Penn State Tree Fruit Production Guide (https://extension.psu.edu/forage‐and‐food‐crops/fruit), Washington State Comprehensive Tree Fruit (http://treefruit.wsu.edu/crop‐protection/disease‐management/blue‐mold/), The Apple Rot Doctor (https://waynejurick.wixsite.com/applerotdr), penicillium expansum genome sequences and resources (https://www.ncbi.nlm.nih.gov/genome/browse/#!/eukaryotes/11336/). This article is a synthesis and compilation of the latest information on the mycotoxingenic blue mould fungus from multiple perspectives that entail omics, biology, and tools for decay control.
Journal Article
Effect of ultrasound on survival and growth of Escherichia coli in cactus pear juice during storage
by
Reyes-Hernández, Isidro
,
Jaramillo-Bustos, Diana Pamela
,
Ramírez-Moreno, Esther
in
Acidity
,
bacteria
,
Cactaceae - chemistry
2016
The aim of this study was to investigate the effectiveness of ultrasound as a conservation method for the inactivation of Escherichia coli inoculated into cactus pear juices (green and purple). Total soluble solids, pH, titratable acidity, and the kinetics of E. coli in cactus pear juices treated by ultrasound (60%, 70%, 80% and 90% amplitude levels for 1, 3 and 5min) were evaluated over 5 days. Total inactivation was observed in both fruit juices after 5min of ultrasound treatment at most amplitude levels (with the exception of 60% and 80%). After one and two days of storage, the recovery of bacteria counts was observed in all cactus pear juices. Ultrasound treatment at 90% amplitude for 5min resulted in non-detectable levels of E. coli in cactus pear juice for 2 days. The parameters of pH, titratable acidity and soluble solids were unaffected.
Journal Article
The formation of volatiles in fruit wine process and its impact on wine quality
by
Tan, Jianxin
,
Chitrakar, Bimal
,
Gong, Jiangang
in
Alcoholic beverages
,
Analysis
,
Aroma compounds
2024
Fruit wine is one of the oldest fermented beverages made from non-grape fruits. Owing to the differences in fruit varieties, growing regions, climates, and harvesting seasons, the nutritional compositions of fruits (sugars, organic acids, etc.) are different. Therefore, the fermentation process and microorganisms involved are varied for a particular fruit selected for wine production, resulting in differences in volatile compound formation, which ultimately determine the quality of fruit wine. This article reviews the effects of various factors involved in fruit wine making, especially the particular modifications differing from the grape winemaking process and the selected strains suitable for the specific fruit wine fermentation, on the formation of volatile compounds, flavor and aroma profiles, and quality characteristics of the wine thus produced.
Key points
•
The volatile profile and fruit wine quality are affected by enological parameters
.
•
The composition and content of nutrients in fruit must impact volatile profiles
.
•
Yeast and LAB are the key determining factors of the volatile profiles of fruit wines
.
Journal Article
Phenotypic and genotypic detection of antibiotic-resistant bacteria in fresh fruit juices from a public hospital in Rio de Janeiro
by
Trocado, Nathalia Diogo
,
Marin, Victor Augustus
,
de Moraes Marcelo Soares
in
Antibiotic resistance
,
Antibiotics
,
Bacteria
2021
Gram-negative bacteria are worrisome because they are becoming resistant to many antibiotic available options, mainly in hospital environment. Several studies have noted the presence of bacteria producing extended-spectrum beta-lactamase, with the presence of antibiotic-resistance genes in fresh vegetables and fruits. This study aimed to detect the presence of phenotypic and genotypic resistance in eight samples of fresh fruit juices served to patients admitted to a hospital in Rio de Janeiro. The growth of microorganisms on MacConkey and XLD agar was carried out to obtain a “pool” of Gram-negative bacteria. The disk diffusion test and the polymerase chain reaction were performed to detect the phenotypic and genotypic resistance of Gram-negative bacteria to the tested antibiotics. The multidrug resistance was detected in all samples and the shv, tem, ctx, tetA, tetB and oxa- 48 genes were found in the samples, including the presence of class 2 and 3 integrons. We can conclude that the selection methodology allows the detection of a greater number of genes and this found warns about the risk of making these foods available to patients in hospitals.
Journal Article
Genetic Heterogeneity of Alicyclobacillus Strains Revealed by RFLP Analysis of vdc Region and rpoB Gene
by
Niezgoda, Jolanta
,
Sokołowska, Barbara
,
Dekowska, Agnieszka
in
Acids
,
Alicyclobacillus - genetics
,
Alicyclobacillus - isolation & purification
2018
PCR-RFLP targeting of the 16S rDNA and rpoB genes, as well as the vdc region, was applied to identify and differentiate between the spoilage and non-spoilage Alicyclobacillus species. Eight reference strains and 75 strains isolated from spoiled juices, juice concentrates, drinks, its intermediates, and fresh apples were subject to study. Hin6I restriction patterns of the 16S rDNA gene enabled distinguishing between all the species analyzed, while the rpoB gene and vdc gene cluster analysis also revealed that there were two major types among the A. acidoterrestris isolates, one similar to the reference strain A. acidoterrestris DSM 2498, and the other similar to the reference strain A. acidoterrestris ATCC 49025. Heterogeneity was also observed among the A. acidocaldarius isolates. RFLP analysis of the 16S rDNA and rpoB genes, as well as vdc region, can be used successfully in the identification and research of intraspecies heterogeneity of the Alicyclobacillus species.
Journal Article
Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity
by
Tian, Shiping
,
Qin, Guozheng
,
Li, Boqiang
in
Biochemistry
,
Biomedical and Life Sciences
,
Fruit
2013
Senescence is a vital aspect of fruit life cycles, and directly affects fruit quality and resistance to pathogens. Reactive oxygen species (ROS), as the primary mediators of oxidative damage in plants, are involved in senescence. Mitochondria are the main ROS and free radical source. Oxidative damage to mitochondrial proteins caused by ROS is implicated in the process of senescence, and a number of senescence-related disorders in a variety of organisms. However, the specific sites of ROS generation in mitochondria remain largely unknown. Recent discoveries have ascertained that fruit senescence is greatly related to ROS and incidental oxidative damage of mitochondrial protein. Special mitochondrial proteins involved in fruit senescence have been identified as the targets of ROS. We focus in discussion on our recent advances in exploring the mechanisms of how ROS regulate fruit senescence and fungal pathogenicity.
Journal Article
Patulin in Apples and Apple-Based Food Products: The Burdens and the Mitigation Strategies
2018
Apples and apple-based products are among the most popular foods around the world for their delightful flavors and health benefits. However, the commonly found mold, Penicillium expansum invades wounded apples, causing the blue mold decay and ensuing the production of patulin, a mycotoxin that negatively affects human health. Patulin contamination in apple products has been a worldwide problem without a satisfactory solution yet. A comprehensive understanding of the factors and challenges associated with patulin accumulation in apples is essential for finding such a solution. This review will discuss the effects of the pathogenicity of Penicillium species, quality traits of apple cultivars, and environmental conditions on the severity of apple blue mold and patulin contamination. Moreover, beyond the complicated interactions of the three aforementioned factors, patulin control is also challenged by the lack of reliable detection methods in food matrices, as well as unclear degradation mechanisms and limited knowledge about the toxicities of the metabolites resulting from the degradations. As apple-based products are mainly produced with stored apples, pre- and post-harvest strategies are equally important for patulin mitigation. Before storage, disease-resistance breeding, orchard-management, and elicitor(s) application help control the patulin level by improving the storage qualities of apples and lowering fruit rot severity. From storage to processing, patulin mitigation strategies could benefit from the optimization of apple storage conditions, the elimination of rotten apples, and the safe and effective detoxification or biodegradation of patulin.
Journal Article