Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
7,676 result(s) for "Fruit flies"
Sort by:
De novo assembly of the olive fruit fly (Bactrocera oleae) genome with linked-reads and long-read technologies minimizes gaps and provides exceptional Y chromosome assembly
The olive fruit fly, Bactrocera oleae, is the most important pest in the olive fruit agribusiness industry. This is because female flies lay their eggs in the unripe fruits and upon hatching the larvae feed on the fruits thus destroying them. The lack of a high-quality genome and other genomic and transcriptomic data has hindered progress in understanding the fly's biology and proposing alternative control methods to pesticide use. Genomic DNA was sequenced from male and female Demokritos strain flies, maintained in the laboratory for over 45 years. We used short-, mate-pair-, and long-read sequencing technologies to generate a combined male-female genome assembly (GenBank accession GCA_001188975.2). Genomic DNA sequencing from male insects using 10x Genomics linked-reads technology followed by mate-pair and long-read scaffolding and gap-closing generated a highly contiguous 489 Mb genome with a scaffold N50 of 4.69 Mb and L50 of 30 scaffolds (GenBank accession GCA_001188975.4). RNA-seq data generated from 12 tissues and/or developmental stages allowed for genome annotation. Short reads from both males and females and the chromosome quotient method enabled identification of Y-chromosome scaffolds which were extensively validated by PCR. The high-quality genome generated represents a critical tool in olive fruit fly research. We provide an extensive RNA-seq data set, and genome annotation, critical towards gaining an insight into the biology of the olive fruit fly. In addition, elucidation of Y-chromosome sequences will advance our understanding of the Y-chromosome's organization, function and evolution and is poised to provide avenues for sterile insect technique approaches.
Fast animal pose estimation using deep neural networks
The need for automated and efficient systems for tracking full animal pose has increased with the complexity of behavioral data and analyses. Here we introduce LEAP (LEAP estimates animal pose), a deep-learning-based method for predicting the positions of animal body parts. This framework consists of a graphical interface for labeling of body parts and training the network. LEAP offers fast prediction on new data, and training with as few as 100 frames results in 95% of peak performance. We validated LEAP using videos of freely behaving fruit flies and tracked 32 distinct points to describe the pose of the head, body, wings and legs, with an error rate of <3% of body length. We recapitulated reported findings on insect gait dynamics and demonstrated LEAP's applicability for unsupervised behavioral classification. Finally, we extended the method to more challenging imaging situations and videos of freely moving mice.
Global establishment risk of economically important fruit fly species (Tephritidae)
The global invasion of Tephritidae (fruit flies) attracts a great deal of attention in the field of plant quarantine and invasion biology because of their economic importance. Predicting which one in hundreds of potential invasive fruit fly species is most likely to establish in a region presents a significant challenge, but can be facilitated using a self organising map (SOM), which is able to analyse species associations to rank large numbers of species simultaneously with an index of establishment. A global presence/absence dataset including 180 economically significant fruit fly species in 118 countries was analysed using a SOM. We compare and contrast ranked lists from six countries selected from each continent, and also show that those countries geographically close were clustered together by the SOM analysis because they have similar fruit fly assemblages. These closely clustered countries therefore represent greater threats to each other as sources of invasive fruit fly species. Finally, we indicate how this SOM method could be utilized as an initial screen to support prioritizing fruit fly species for further research into their potential to invade a region.
Drosophila as a model for the gut microbiome
In particular, Drosophila melanogaster, the fruit fly, is one of the most powerful models for animal genetics and has a simple microbiome composed of 5 to 20 microbial species that can be reconstituted in the lab by brief treatment of eggs with bleach followed by association with defined bacterial species [4, 5]. [...]the fly model facilitates exploration of both host and bacterial genetics. Bacterial presence impacts various fly phenotypes including development [12], behavior [13, 14], life span [15], and disease resistance [16]. Since ingestion of microorganisms contributes to a substantial portion of the macronutrient and micronutrient intake of flies, it is unclear to what extent the effects of the microbiome are due to resident gut microbes versus microbes serving as agricultural goods for consumption from the food surface [17–20]. A feeding or foraging preference for specific bacteria was found independently by several labs [13, 30, 31]. [...]fly-associated bacteria can colonize the host, benefit the host, and benefit from the host, and the host seeks them out. [...]similar strains with similar abundance in the gut can have very different nutritional impacts on the host.
A field test on the effectiveness of male annihilation technique against Bactrocera dorsalis (Diptera: Tephritidae) at varying application densities
Male Annihilation Technique (MAT) is a key tool to suppress or eradicate pestiferous tephritid fruit flies for which there exist powerful male lures. In the case of Bactrocera dorsalis (Hendel), a highly invasive and destructive species, current implementations of MAT utilize a combination of the male attractant methyl eugenol (ME) and a toxicant such as spinosad (\"SPLAT-MAT-ME\") applied at a high density with the goal of attracting and killing an extremely high proportion of males. We conducted direct comparisons of trap captures of marked B. dorsalis males released under three experimental SPLAT-MAT-ME site densities (110, 220, and 440 per km2) near Hilo, Hawaii using both fresh and aged traps to evaluate the effectiveness of varying densities and how weathering of the SPLAT-MAT-ME formulation influenced any density effects observed. Counterintuitively, we observed decreasing effectiveness (percent kill) with increasing application density. We also estimated slightly higher average kill for any given density for weathered grids compared with fresh. Spatial analysis of the recapture patterns of the first trap service per replicate x treatment reveals similar positional effects for all grid densities despite differences in overall percent kill. This study suggests that benefits for control and eradication programs would result from reducing the application density of MAT against B. dorsalis through reduced material use, labor costs, and higher effectiveness. Additional research in areas where MAT programs are currently undertaken would be helpful to corroborate this study's findings.
Mechanism of parkin activation by phosphorylation
Mutations in the ubiquitin ligase parkin are responsible for a familial form of Parkinson's disease. Parkin and the PINK1 kinase regulate a quality-control system for mitochondria. PINK1 phosphorylates ubiquitin on the outer membrane of damaged mitochondria, thus leading to recruitment and activation of parkin via phosphorylation of its ubiquitin-like (Ubl) domain. Here, we describe the mechanism of parkin activation by phosphorylation. The crystal structure of phosphorylated Bactrocera dorsalis (oriental fruit fly) parkin in complex with phosphorylated ubiquitin and an E2 ubiquitin-conjugating enzyme reveals that the key activating step is movement of the Ubl domain and release of the catalytic RING2 domain. Hydrogen/deuterium exchange and NMR experiments with the various intermediates in the activation pathway confirm and extend the interpretation of the crystal structure to mammalian parkin. Our results rationalize previously unexplained Parkinson's disease mutations and the presence of internal linkers that allow large domain movements in parkin.
Gut bacterial diversity and physiological traits of Anastrepha fraterculus Brazilian-1 morphotype males are affected by antibiotic treatment
The interaction between gut bacterial symbionts and Tephritidae became the focus of several studies that showed that bacteria contributed to the nutritional status and the reproductive potential of its fruit fly hosts. Anastrepha fraterculus is an economically important fruit pest in South America. This pest is currently controlled by insecticides, which prompt the development of environmentally friendly methods such as the sterile insect technique (SIT). For SIT to be effective, a deep understanding of the biology and sexual behavior of the target species is needed. Although many studies have contributed in this direction, little is known about the composition and role of A. fraterculus symbiotic bacteria. In this study we tested the hypothesis that gut bacteria contribute to nutritional status and reproductive success of A. fraterculus males. AB affected the bacterial community of the digestive tract of A. fraterculus, in particular bacteria belonging to the Enterobacteriaceae family, which was the dominant bacterial group in the control flies (i.e., non-treated with AB). AB negatively affected parameters directly related to the mating success of laboratory males and their nutritional status. AB also affected males' survival under starvation conditions. The effect of AB on the behaviour and nutritional status of the males depended on two additional factors: the origin of the males and the presence of a proteinaceous source in the diet. Our results suggest that A. fraterculus males gut contain symbiotic organisms that are able to exert a positive contribution on A. fraterculus males' fitness, although the physiological mechanisms still need further studies.
A gut microbial factor modulates locomotor behaviour in Drosophila
While research into the biology of animal behaviour has primarily focused on the central nervous system, cues from peripheral tissues and the environment have been implicated in brain development and function . There is emerging evidence that bidirectional communication between the gut and the brain affects behaviours including anxiety, cognition, nociception and social interaction . Coordinated locomotor behaviour is critical for the survival and propagation of animals, and is regulated by internal and external sensory inputs . However, little is known about how the gut microbiome influences host locomotion, or the molecular and cellular mechanisms involved. Here we report that germ-free status or antibiotic treatment results in hyperactive locomotor behaviour in the fruit fly Drosophila melanogaster. Increased walking speed and daily activity in the absence of a gut microbiome are rescued by mono-colonization with specific bacteria, including the fly commensal Lactobacillus brevis. The bacterial enzyme xylose isomerase from L. brevis recapitulates the locomotor effects of microbial colonization by modulating sugar metabolism in flies. Notably, thermogenetic activation of octopaminergic neurons or exogenous administration of octopamine, the invertebrate counterpart of noradrenaline, abrogates the effects of xylose isomerase on Drosophila locomotion. These findings reveal a previously unappreciated role for the gut microbiome in modulating locomotion, and identify octopaminergic neurons as mediators of peripheral microbial cues that regulate motor behaviour in animals.
Thermal effect on the fecundity and longevity of Bactrocera dorsalis adults and their improved oviposition model
The oriental fruit fly, Bactrocera dorsalis, is a destructive polyphagous pest that causes damage to various fruit crops, and their distribution is currently expanding worldwide. Temperature is an important abiotic factor that influences insect population dynamics and distribution by affecting their survival, development, and reproduction. We examined the fecundity, pre-oviposition and oviposition periods, and longevity of adult B. dorsalis at various constant temperatures ranging from13°C to 35°C. The longevity of female B. dorsalis ranged from 116.8 days (18.8°C) to 22.4 days (34.9°C), and the maximum fecundity per female was 1,684 eggs at 28.1°C. Females were only able to lay eggs at 16.7°C to 34.9°C, and both the pre-oviposition and oviposition periods were different depending on the temperature. We modeled female reproduction in two oviposition models (OMs): 1) the current model developed by Kim and Lee, an OM composed of a fecundity model, age-specific survival model, and age-specific cumulative oviposition rate model, and 2) a two-phase OM modified the logic structure of the current model by separating pre-oviposition, so that oviposition was estimated with the female in oviposition phase who had complete pre-oviposition phase. The results of the two-phase OM provided more realistic outputs at lower and higher temperatures than those of the current model. We discussed the usefulness of the two-phase OM for the reproduction of insects with long pre-oviposition periods.
Overexpression of pink1 or parkin in indirect flight muscles promotes mitochondrial proteostasis and extends lifespan in Drosophila melanogaster
Dysfunctional mitochondria have been implicated in aging and age-related disorders such as Parkinson's diseases (PD). We previously showed that pink1 and parkin, two familial PD genes, function in a linear pathway to maintain mitochondrial integrity and function. Studies of mammalian cell lines also suggest that these genes regulate mitochondrial autophagy(mitophagy). Overexpressing Parkin promotes proteostasis and function of aged muscles both in fruit flies and mice, and recent studies also indicated that mitochondrial ubiquitination are accumulated in aged muscles. However, the underlying mechanisms for pink1 and parkin mediated mitophagy on longevity is not fully understood. Here, we found that mitochondrial ubiquitination increased in indirect flight muscles (IFMs) in an age-dependent manner. Overexpression of pink1 or parkin in IFMs can abolish mitochondrial ubiquitination, restore ATP level and extend lifespan, while blocking autophagy via ATG1 knock-down suppress these effects in aged IFMs. Taken together, these results show that pink1/parkin promotes mitophagy of mitochondrial ubiquitination in aged muscles and extend lifespan in an Atg1-dependent manner. Our study provides physiological evidence that mitophagy of mitochondrial ubiquitination mediated by PINK1/ Parkin is crucial for muscle function and highlights the role of mitophagy in the pathogenesis of chronic diseases like PD.