Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
218 result(s) for "Fugu"
Sort by:
Identification of the sex-determining locus in grass puffer
There is increasing evidence for frequent turnover in sex chromosomes in vertebrates. Yet experimental systems suitable for tracing the detailed process of turnover are rare. In theory, homologous turnover is possible if the new sex-determining locus is established on the existing sex-chromosome. However, there is no empirical evidence for such an event. The genus Takifugu includes fugu (Takifugu rubripes) and its two closely-related species whose sex is most likely determined by a SNP at the Amhr2 locus. In these species, males are heterozygous, with G and C alleles at the SNP site, while females are homozygous for the C allele. To determine if a shift in the sex-determining locus occurred in another member of this genus, we used genetic mapping to characterize the sex-chromosome systems of Takifugu niphobles. We found that the G allele of Amhr2 is absent in T. niphobles. Nevertheless, our initial mapping suggests a linkage between the phenotypic sex and the chromosome 19, which harbors the Amhr2 locus. Subsequent high-resolution analysis using a sex-reversed fish demonstrated that the sex-determining locus maps to the proximal end of chromosome 19, far from the Amhr2 locus. Thus, it is likely that homologous turnover involving these species has occurred. The data also showed that there is a male-specific reduction of recombination around the sex-determining locus. Nevertheless, no evidence for sex-chromosome differentiation was detected: the reduced recombination depended on phenotypic sex rather than genotypic sex; no X- or Y-specific maker was obtained; the YY individual was viable. Furthermore, fine-scale mapping narrowed down the new sex-determining locus to the interval corresponding to approximately 300-kb of sequence in the fugu genome. Thus, T. niphobles is determined to have a young and small sex-determining region that is suitable for studying an early phase of sex-chromosome evolution and the mechanisms underlying turnover of sex chromosome.
Tetrodotoxin/Saxitoxin Accumulation Profile in the Euryhaline Marine Pufferfish IChelonodontops patoca/I
Marine Takifugu pufferfish, which naturally possess tetrodotoxins (TTXs), selectively take up and accumulate TTXs, whereas freshwater Pao pufferfish, which naturally possess saxitoxins (STXs), selectively take up and accumulate STXs. To further clarify the TTXs/STXs selectivity in pufferfish, we conducted a TTX/STX administration experiment using Chelonodontops patoca, a euryhaline marine pufferfish possessing both TTXs and STXs. Forty nontoxic cultured individuals of C. patoca were divided into a seawater group (SW, acclimated/reared at 33‰ salinity; n = 20) and a brackish water group (BW, acclimated/reared at 8‰ salinity; n = 20). An aqueous TTX/STX mixture was intrarectally administered (both at 7.5 nmol/fish), and five individuals/group were analyzed after 1–48 h. Instrumental toxin analyses revealed that both TTX and STX were taken up, transferred, and retained, but more STX than TTX was retained in both groups. TTX gradually decreased and eventually became almost undetectable in the intestinal tissue, while STX was retained at ~5–10% of the dose level, and only STX showed transient transfer in the liver. The BW group showed a faster decrease/disappearance of TTX, greater STX retention in the intestine, and greater STX transient transfer to the liver. Thus, C. patoca appears to more easily accumulate STXs than TTXs, especially under hypoosmotic conditions.
A Trans-Species Missense SNP in Amhr2 Is Associated with Sex Determination in the Tiger Pufferfish, Takifugu rubripes (Fugu)
Heterogametic sex chromosomes have evolved independently in various lineages of vertebrates. Such sex chromosome pairs often contain nonrecombining regions, with one of the chromosomes harboring a master sex-determining (SD) gene. It is hypothesized that these sex chromosomes evolved from a pair of autosomes that diverged after acquiring the SD gene. By linkage and association mapping of the SD locus in fugu (Takifugu rubripes), we show that a SNP (C/G) in the anti-Müllerian hormone receptor type II (Amhr2) gene is the only polymorphism associated with phenotypic sex. This SNP changes an amino acid (His/Asp384) in the kinase domain. While females are homozygous (His/His384), males are heterozygous. Sex in fugu is most likely determined by a combination of the two alleles of Amhr2. Consistent with this model, the medaka hotei mutant carrying a substitution in the kinase domain of Amhr2 causes a female phenotype. The association of the Amhr2 SNP with phenotypic sex is conserved in two other species of Takifugu but not in Tetraodon. The fugu SD locus shows no sign of recombination suppression between X and Y chromosomes. Thus, fugu sex chromosomes represent an unusual example of proto-sex chromosomes. Such undifferentiated X-Y chromosomes may be more common in vertebrates than previously thought.
Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes
The compact genome of Fugu rubripes has been sequenced to over 95% coverage, and more than 80% of the assembly is in multigene-sized scaffolds. In this 365-megabase vertebrate genome, repetitive DNA accounts for less than one-sixth of the sequence, and gene loci occupy about one-third of the genome. As with the human genome, gene loci are not evenly distributed, but are clustered into sparse and dense regions. Some \"giant\" genes were observed that had average coding sequence sizes but were spread over genomic lengths significantly larger than those of their human orthologs. Although three-quarters of predicted human proteins have a strong match to Fugu, approximately a quarter of the human proteins had highly diverged from or had no pufferfish homologs, highlighting the extent of protein evolution in the 450 million years since teleosts and mammals diverged. Conserved linkages between Fugu and human genes indicate the preservation of chromosomal segments from the common vertebrate ancestor, but with considerable scrambling of gene order.
In vivo enhancer analysis of human conserved non-coding sequences
Gene regulators unmasked Identifying the non-coding DNA sequences that act at a distance to regulate patterns of gene expression is not a simple matter; one useful pointer is evolutionary sequence conservation. An in vivo analysis of 167 non-coding elements in the human genome that are extremely conserved based on comparisons with pufferfish, rat and mouse genomes, has identified 75 previously unknown tissue-specific enhancers. These are active in embryos on day 11, most of them directing expression in the developing nervous system. The success of this method suggests that the further 5,500 non-coding sequences conserved between humans and pufferfish may yield another new batch of gene enhancers. Identifying the sequences that direct the spatial and temporal expression of genes and defining their function in vivo remains a significant challenge in the annotation of vertebrate genomes. One major obstacle is the lack of experimentally validated training sets. In this study, we made use of extreme evolutionary sequence conservation as a filter to identify putative gene regulatory elements, and characterized the in vivo enhancer activity of a large group of non-coding elements in the human genome that are conserved in human–pufferfish, Takifugu ( Fugu ) rubripes , or ultraconserved 1 in human–mouse–rat. We tested 167 of these extremely conserved sequences in a transgenic mouse enhancer assay. Here we report that 45% of these sequences functioned reproducibly as tissue-specific enhancers of gene expression at embryonic day 11.5. While directing expression in a broad range of anatomical structures in the embryo, the majority of the 75 enhancers directed expression to various regions of the developing nervous system. We identified sequence signatures enriched in a subset of these elements that targeted forebrain expression, and used these features to rank all ∼3,100 non-coding elements in the human genome that are conserved between human and Fugu . The testing of the top predictions in transgenic mice resulted in a threefold enrichment for sequences with forebrain enhancer activity. These data dramatically expand the catalogue of human gene enhancers that have been characterized in vivo , and illustrate the utility of such training sets for a variety of biological applications, including decoding the regulatory vocabulary of the human genome.
Changes in DNA methylation during epigenetic-associated sex reversal under low temperature in Takifugu rubripes
DNA methylation has frequently been implicated in sex determination and differentiation in teleost species. In order to detect the DNA methylation patterns established during sexual differentiation in tiger pufferfish T. rubripes, we performed comprehensive whole genome methylation sequencing and analyses of the gonads of male, female, and pseudo male. We obtained a total of 33.12, 32.44, and 31.60 Gb clean data for male, female, and pseudo male, with a sequencing depth of 66.44×, 60.47× and 54.86×, respectively. The methylation level of cytosine (C) residues in the genomic DNA from gonads was 11.016%, 10.428%, and 11.083% in male, female, and pseudo male, respectively. More than 65% of C methylation was at CpG sites, and less than 1% was at CHG and CHH sites. In each regulatory element, there were low methylation levels on both sides of the transcription start site, and higher methylation levels in exons, introns, and downstream of genes. The highest mCpG was on chromosome 8 and the lowest mCpG was on chromosome 5. Comparisons of whole-genome DNA methylation between pairs of samples revealed that there were 3,173 differentially methylated regions (DMRs) between female and male, and 3,037 DMRs between male and pseudo male, corresponding to 0.232% and 0.223% of the length of the genome, respectively. There were only 1,635 DMRs between female and pseudo male, representing 0.127% of the length of the genome. A number of differentially methylated genes (DMGs) related to sex determination and differentiation were selected, such as amhr2 and pfcyp19a. After Bisulfite Sequencing PCR (BSP) verification, amhr2 was exhibited low methylation level in normal males and pseudo male, and high methylation level in normal females but pfcyp19a showed low methylation level in normal females and high methylation level in normal males and pseudo males. These results provide information about the molecular epigenetic mechanisms of DNA methylation during low-temperature induced masculinization of tiger pufferfish, and increase our understanding of the mechanisms of sex determination and differentiation in this important aquaculture fish species.
Identification of the sex-determining locus in grass puffer (Takifugu niphobles) provides evidence for sex-chromosome turnover in a subset of Takifugu species
There is increasing evidence for frequent turnover in sex chromosomes in vertebrates. Yet experimental systems suitable for tracing the detailed process of turnover are rare. In theory, homologous turnover is possible if the new sex-determining locus is established on the existing sex-chromosome. However, there is no empirical evidence for such an event. The genus Takifugu includes fugu (Takifugu rubripes) and its two closely-related species whose sex is most likely determined by a SNP at the Amhr2 locus. In these species, males are heterozygous, with G and C alleles at the SNP site, while females are homozygous for the C allele. To determine if a shift in the sex-determining locus occurred in another member of this genus, we used genetic mapping to characterize the sex-chromosome systems of Takifugu niphobles. We found that the G allele of Amhr2 is absent in T. niphobles. Nevertheless, our initial mapping suggests a linkage between the phenotypic sex and the chromosome 19, which harbors the Amhr2 locus. Subsequent high-resolution analysis using a sex-reversed fish demonstrated that the sex-determining locus maps to the proximal end of chromosome 19, far from the Amhr2 locus. Thus, it is likely that homologous turnover involving these species has occurred. The data also showed that there is a male-specific reduction of recombination around the sex-determining locus. Nevertheless, no evidence for sex-chromosome differentiation was detected: the reduced recombination depended on phenotypic sex rather than genotypic sex; no X- or Y-specific maker was obtained; the YY individual was viable. Furthermore, fine-scale mapping narrowed down the new sex-determining locus to the interval corresponding to approximately 300-kb of sequence in the fugu genome. Thus, T. niphobles is determined to have a young and small sex-determining region that is suitable for studying an early phase of sex-chromosome evolution and the mechanisms underlying turnover of sex chromosome.
Study Of The Of The Biological Activity Of 1-OCTEN-3-OL In Penicillium Canescens
This work reports for the first time that Penicillium canescens synthesises a probable quorum sensing substance (QRS) 1-octen-3-ol. The impact of this molecule on the morphological changes of this fugus and its biosynthesis of industrial metabolites endo-?-(1, 4)-xylanase and ?-galactosidase was highlighted. After seven days of culture, 11 ± 1 and 17 ± 1 µg of 1-octen-3-ol/ml were quantified in 863 and in submerged fermentation media (SFM), respectively. In solid-state fermentation (SSF), 10 5 , 106 and 107 spores/g as initial inoculum caused the productions of 363 ± 36, 636 ± 39 and 1000 ± 38 µg of 1-octen-3-ol/g of soya oil cake, respectively. However, under growth circumstances, the level of 1-octen-3-ol was too weak (inferior to 84 µg/ml on 863 medium and 5859 µg/g of soya oil cake, respectively) to influence the growth of P. canescens and its production of endo-?-(1, 4)-xylanase and ?-galactosidase. Also, the inductive conidiation effect of 1-octen-3-ol was not obvious, and so, it can't be considered as a quorum sensing substance in P. canescens .
Variation in Sequence and Organization of Splicing Regulatory Elements in Vertebrate Genes
Although core mechanisms and machinery of premRNA splicing are conserved from yeast to human, the details of intron recognition often differ, even between closely related organisms. For example, genes from the pufferfish Fugu rubripes generally contain one or more introns that are not properly spliced in mouse cells. Exploiting available genome sequence data, a battery of sequence analysis techniques was used to reach several conclusions about the organization and evolution of splicing regulatory elements in vertebrate genes. The classical splice site and putative branch site signals are completely conserved across the vertebrates studied (human, mouse, pufferfish, and zebrafish), and exonic splicing enhancers also appear broadly conserved in vertebrates. However, another class of splicing regulatory elements, the intronic splicing enhancers, appears to differ substantially between mammals and fish, with G triples (GGG) very abundant in mammalian introns but comparatively rare in fish. Conversely, short repeats of AC and GT are predicted to function as intronic splicing enhancers in fish but are not enriched in mammalian introns. Consistent with this pattern, exonic splicing enhancer-binding SR proteins are highly conserved across all vertebrates, whereas heterogeneous nuclear ribonucleoproteins, which bind many intronic sequences, vary in domain structure and even presence/absence between mammals and fish. Exploiting differences in intronic sequence composition, a statistical model was developed to predict the splicing phenotype of Fugu introns in mammalian systems and was used to engineer the spliceability of a Fugu intron in human cells by insertion of specific sequences, thereby rescuing splicing in human cells.
Transcriptome Analysis Identifies Key Metabolic Changes in the Brain of ITakifugu rubripes/I in Response to Chronic Hypoxia
The brain is considered to be an extremely sensitive tissue to hypoxia, and the brain of fish plays an important role in regulating growth and adapting to environmental changes. As an important aquatic organism in northern China, the economic yield of Takifugu rubripes is deeply influenced by the oxygen content of seawater. In this regard, we performed RNA-seq analysis of T. rubripes brains under hypoxia and normoxia to reveal the expression patterns of genes involved in the hypoxic response and their enrichment of metabolic pathways. Studies have shown that carbohydrate, lipid and amino acid metabolism are significant pathways for the enrichment of differentially expressed genes (DEGs) and that DEGs are significantly upregulated in those pathways. In addition, some biological processes such as the immune system and signal transduction, where enrichment is not significant but important, are also discussed. Interestingly, the DEGs associated with those pathways were significantly downregulated or inhibited. The present study reveals the mechanism of hypoxia tolerance in T. rubripes at the transcriptional level and provides a useful resource for studying the energy metabolism mechanism of hypoxia response in this species.