Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
873
result(s) for
"Functional Laterality - genetics"
Sort by:
Handedness and its genetic influences are associated with structural asymmetries of the cerebral cortex in 31,864 individuals
2021
Roughly 10% of the human population is left-handed, and this rate is increased in some brain-related disorders. The neuroanatomical correlates of hand preference have remained equivocal. We resampled structural brain image data from 28,802 right-handers and 3,062 left-handers (UK Biobank population dataset) to a symmetrical surface template, and mapped asymmetries for each of 8,681 vertices across the cerebral cortex in each individual. Left-handers compared to right-handers showed average differences of surface area asymmetry within the fusiform cortex, the anterior insula, the anterior middle cingulate cortex, and the precentral cortex. Meta-analyzed functional imaging data implicated these regions in executive functions and language. Polygenic disposition to left-handedness was associated with two of these regional asymmetries, and 18 loci previously linked with left-handedness by genome-wide screening showed associations with one or more of these asymmetries. Implicated genes included six encoding microtubule-related proteins: TUBB, TUBA1B, TUBB3, TUBB4A, MAP2, and NME7—mutations in the latter can cause left to right reversal of the visceral organs. There were also two cortical regions where average thickness asymmetry was altered in lef-thandedness: on the postcentral gyrus and the inferior occipital cortex, functionally annotated with hand sensorimotor and visual roles. These cortical thickness asymmetries were not heritable. Heritable surface area asymmetries of language-related regions may link the etiologies of hand preference and language, whereas nonheritable asymmetries of sensorimotor cortex may manifest as consequences of hand preference.
Journal Article
Cerebral Asymmetry and Language Development: Cause, Correlate, or Consequence?
2013
In most people, language is processed predominantly by the left hemisphere of the brain, but we do not know how or why. A popular view is that developmental language disorders result from a poorly lateralized brain, but until recently, evidence has been weak and indirect. Modern neuroimaging methods have made it possible to study normal and abnormal development of lateralized function in the developing brain and have confirmed links with language and literacy impairments. However, there is little evidence that weak cerebral lateralization has common genetic origins with language and literacy impairments. Our understanding of the association between atypical language lateralization and developmental disorders may benefit if we reconceptualize the nature of cerebral asymmetry to recognize its multidimensionality and consider variation in lateralization over developmental time. Contrary to popular belief, cerebral lateralization may not be a highly heritable, stable characteristic of individuals; rather, weak lateralization may be a consequence of impaired language learning.
Journal Article
Dual-mode operation of neuronal networks involved in left–right alternation
by
Bouvier, Julien
,
Fortin, Gilles
,
Kiehn, Ole
in
631/378/2632/2633
,
Animals
,
Biological and medical sciences
2013
A group of transcriptionally defined spinal neurons, V0 neurons, are identified as necessary for the control of normal alternation of left and right limbs in mice.
Locomotion step change derives from V0 neurons
Locomotion involves coordinated and sequential activation of neurons and muscles on both sides of the body. Ole Kiehn and colleagues identify a group of transcriptionally defined spinal neurons, the V0 neurons derived from the p0 progenitor domain of the ventral spinal chord, as being responsible for controlling alternation of left and right limbs in mouse. Both excitatory and inhibitory V0 neurons exist, and ablation of individual populations selectively impairs alternation at different locomotion speeds.
All forms of locomotion are repetitive motor activities that require coordinated bilateral activation of muscles. The executive elements of locomotor control are networks of spinal neurons that determine gait pattern through the sequential activation of motor-neuron pools on either side of the body axis
1
,
2
,
3
,
4
. However, little is known about the constraints that link left–right coordination to locomotor speed. Recent advances have indicated that both excitatory and inhibitory commissural neurons may be involved in left–right coordination
5
,
6
,
7
. But the neural underpinnings of this, and a possible causal link between these different groups of commissural neurons and left–right alternation, are lacking. Here we show, using intersectional mouse genetics, that ablation of a group of transcriptionally defined commissural neurons—the V0 population—leads to a quadrupedal hopping at all frequencies of locomotion. The selective ablation of inhibitory V0 neurons leads to a lack of left–right pattern at low frequencies, mixed coordination at medium frequencies, and alternation at high locomotor frequencies. When ablation is targeted to excitatory V0 neurons, left–right alternation is present at low frequencies, and hopping is restricted to medium and high locomotor frequencies. Therefore, the intrinsic logic of the central control of locomotion incorporates a modular organization, with two subgroups of V0 neurons required for the existence of left–right alternating modes at different speeds of locomotion. The two molecularly distinct sets of commissural neurons may constrain species-related naturally occurring frequency-dependent coordination and be involved in the evolution of different gaits.
Journal Article
The molecular genetics of hand preference revisited
2019
Hand preference is a prominent behavioural trait linked to human brain asymmetry. A handful of genetic variants have been reported to associate with hand preference or quantitative measures related to it. Most of these reports were on the basis of limited sample sizes, by current standards for genetic analysis of complex traits. Here we performed a genome-wide association analysis of hand preference in the large, population-based UK Biobank cohort (N = 331,037). We used gene-set enrichment analysis to investigate whether genes involved in visceral asymmetry are particularly relevant to hand preference, following one previous report. We found no evidence supporting any of the previously suggested variants or genes, nor that genes involved in visceral laterality have a role in hand preference. It remains possible that some of the previously reported genes or pathways are relevant to hand preference as assessed in other ways, or else are relevant within specific disorder populations. However, some or all of the earlier findings are likely to be false positives, and none of them appear relevant to hand preference as defined categorically in the general population. Our analysis did produce a small number of novel, significant associations, including one implicating the microtubule-associated gene
MAP2
in handedness.
Journal Article
Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis
by
Li, Ying
,
Cleveland, Don W
,
Rothstein, Jeffrey D
in
631/378/1689/1285
,
631/378/2596/1705
,
692/699/375/1411
2013
Oligodendrocytes form myelin sheaths and provide metabolic support to axons. Using
in vivo
genetic fate tracing in a mouse model of amyotrophic lateral sclerosis (ALS), this study shows that there is extensive degeneration of oligodendrocytes near motor neurons prior to behavioral manifestation of disease. Although oligodendrocytes were regenerated from resident progenitors, they failed to mature and restore myelin, a feature also observed in brain and spinal cord tissue from ALS patients. Selective deletion of ALS-linked mutant SOD1 from the oligodendrocyte lineage greatly delayed disease onset, suggesting that this mutant protein impairs their ability to support motor neurons.
Oligodendrocytes associate with axons to establish myelin and provide metabolic support to neurons. In the spinal cord of amyotrophic lateral sclerosis (ALS) mice, oligodendrocytes downregulate transporters that transfer glycolytic substrates to neurons and oligodendrocyte progenitors (NG2
+
cells) exhibit enhanced proliferation and differentiation, although the cause of these changes in oligodendroglia is unknown. We found extensive degeneration of gray matter oligodendrocytes in the spinal cord of SOD1 (G93A) ALS mice prior to disease onset. Although new oligodendrocytes were formed, they failed to mature, resulting in progressive demyelination. Oligodendrocyte dysfunction was also prevalent in human ALS, as gray matter demyelination and reactive changes in NG2
+
cells were observed in motor cortex and spinal cord of ALS patients. Selective removal of mutant SOD1 from oligodendroglia substantially delayed disease onset and prolonged survival in ALS mice, suggesting that ALS-linked genes enhance the vulnerability of motor neurons and accelerate disease by directly impairing the function of oligodendrocytes.
Journal Article
Neuronal control of locomotor handedness in Drosophila
by
Benjamin L. de Bivort
,
Sean M. Buchanan
,
Jamey S. Kain
in
Animals
,
Animals, Genetically Modified
,
Asymmetry
2015
Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality.
Significance Genetically identical individuals display variability in their behaviors even when reared in essentially identical environments. This variation underlies both personality and individuality, but there is little mechanistic understanding of how such differences arise. Here, we investigated individual-to-individual variation in locomotor behaviors of fruit flies. Surprisingly, individual flies exhibit significant bias in their left vs. right locomotor choices during exploratory locomotion, with some flies being strongly left biased or right biased. Using the Drosophila genetic toolkit, we find that the magnitude of locomotor handedness is under the control of neurons within a brain region implicated in motor planning and execution. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality.
Journal Article
Control of species-dependent cortico-motoneuronal connections underlying manual dexterity
2017
Superior manual dexterity in higher primates emerged together with the appearance of cortico-motoneuronal (CM) connections during the evolution of the mammalian corticospinal (CS) system. Previously thought to be specific to higher primates, we identified transient CM connections in early postnatal mice, which are eventually eliminated by Sema6D-PlexA1 signaling. PlexA1 mutant mice maintain CM connections into adulthood and exhibit superior manual dexterity as compared with that of controls. Last, differing PlexA1 expression in layer 5 of the motor cortex, which is strong in wild-type mice but weak in humans, may be explained by FEZF2-mediated cis-regulatory elements that are found only in higher primates. Thus, species-dependent regulation of PlexA1 expression may have been crucial in the evolution of mammalian CS systems that improved fine motor control in higher primates.
Journal Article
Complementary hemispheric specialization for language production and visuospatial attention
2013
Language production and spatial attention are the most salient lateralized cerebral functions, and their complementary specialization has been observed in the majority of the population. To investigate whether the complementary specialization has a causal origin (the lateralization of one function causes the opposite lateralization of the other) or rather is a statistical phenomenon (different functions lateralize independently), we determined the lateralization for spatial attention in a group of individuals with known atypical right hemispheric (RH) lateralization for speech production, based on a previous large-scale screening of left-handers. We show that all 13 participants with RH language dominance have left-hemispheric dominance for spatial attention, and all but one of 16 participants with left-hemispheric language dominance are RH dominant for spatial attention. Activity was observed in the dorsal fronto-parietal pathway of attention, including the inferior parietal sulcus and superior parietal lobule, the frontal eye-movement field, and the inferior frontal sulcus/gyrus, and these regions functionally colateralized in the hemisphere dominant for attention, independently of the side of lateralization. Our results clearly support the Causal hypothesis about the complementary specialization, and we speculate that it derives from a longstanding evolutionary origin. We also suggest that the conclusions about lateralization based on an unselected sample of the population and laterality assessment using coarse functional transcranial Doppler sonography should be interpreted with more caution.
Journal Article
Left Brain, Right Brain: Facts and Fantasies
2014
Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the \"norm\" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.
Journal Article
Common Variants in Left/Right Asymmetry Genes and Pathways Are Associated with Relative Hand Skill
2013
Humans display structural and functional asymmetries in brain organization, strikingly with respect to language and handedness. The molecular basis of these asymmetries is unknown. We report a genome-wide association study meta-analysis for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)] (n = 728). The most strongly associated variant, rs7182874 (P = 8.68 × 10(-9)), is located in PCSK6, further supporting an association we previously reported. We also confirmed the specificity of this association in individuals with RD; the same locus was not associated with relative hand skill in a general population cohort (n = 2,666). As PCSK6 is known to regulate NODAL in the development of left/right (LR) asymmetry in mice, we developed a novel approach to GWAS pathway analysis, using gene-set enrichment to test for an over-representation of highly associated variants within the orthologs of genes whose disruption in mice yields LR asymmetry phenotypes. Four out of 15 LR asymmetry phenotypes showed an over-representation (FDR ≤ 5%). We replicated three of these phenotypes; situs inversus, heterotaxia, and double outlet right ventricle, in the general population cohort (FDR ≤ 5%). Our findings lead us to propose that handedness is a polygenic trait controlled in part by the molecular mechanisms that establish LR body asymmetry early in development.
Journal Article