Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
91
result(s) for
"Furaldehyde - pharmacology"
Sort by:
The Toxicological Aspects of the Heat-Borne Toxicant 5-Hydroxymethylfurfural in Animals: A Review
by
Farag, Mayada R.
,
Samak, Dalia
,
Khafaga, Asmaa F.
in
5-hydroxymethylfurfural
,
Animals
,
Bakeries
2020
The incidence of adverse reactions in food is very low, however, some food products contain toxins formed naturally due to their handling, processing and storage conditions. 5-(Hydroxymethyl)-2-furfural (HMF) can be formed by hydrogenation of sugar substances in some of manufactured foodstuffs and honey under elevated temperatures and reduced pH conditions following Maillard reactions. In previous studies, it was found that HMF was responsible for harmful (mutagenic, genotoxic, cytotoxic and enzyme inhibitory) effects on human health. HMF occurs in a wide variety of food products like dried fruit, juice, caramel products, coffee, bakery, malt and vinegar. The formation of HMF is not only an indicator of food storage conditions and quality, but HMF could also be used as an indicator of the potential occurrence of contamination during heat-processing of some food products such as coffee, milk, honey and processed fruits. This review focuses on HMF formation and summarizes the adverse effects of HMF on human health.
Journal Article
5-Hydroxymethylfurfural: A Particularly Harmful Molecule Inducing Toxic Lipids and Proteins?
by
Bystrianska, Simona
,
Feigl, Georg
,
Greilberger, Michaela
in
4-Hydroxynonenal (HNE)
,
5-Hydroxy-methyl-furfural (5-HMF)
,
Antioxidants - chemistry
2025
Introduction: 5-HMF is a molecule found in carbohydrate-rich foods that is associated not only with cancer and anaphylactic reactions, but also with anti-oxidant properties. Questions arose as to whether 5-HMF exhibited a catalytic effect in relation to lipid peroxidation and lipoprotein oxidation in presence of metals and/or radicals. Methods: Peroxynitrite (ONOO−)-induced chemiluminescence and ONOO− nitration of tyrosine residues on BSA using anti-nitro-tyrosine-antibodies were used to measure the protection of 5-HMF against peroxides or nitration compared to vitamin C (VitC). The reductive potential of 5-HMF or VitC on Cu2+ or Fe3 was estimated using the bicinchoninic acid (BCA) or Fenton-complex method. Human plasma was used to measure the generation of malondialdehyde (MDA), 4-hydroxynonenal (HNE), and total thiols after Fe2+/H2O2 oxidation in the presence of different concentrations of 5-HMF or VitC. Finally, Cu2+ oxidation of LDL after 4 h was carried out with 5-HMF or VitC, measuring the concentration of MDA in LDL with the thiobarbituric assay (TBARS). Results: VitC was 4-fold more effective than 5-HMF in scavenging ONOO− to nearly 91.5% at 4 mM, with the exception of 0.16 mM, where the reduction of ONOO− by VitC was 3.3-fold weaker compared to 0.16 mM 5-HMF. VitC or 5-HMF at a concentration of 6 mM inhibited the nitration of tyrosine residues on BSA to nearly 90% with a similar course. While 5-HMF reduced free Fe3+ in presence of phenanthroline, forming Fe2+ (phenantroleine)3 [Fe2+(phe)3] or complexed Cu2+(BCA)4 to Cu+(BCA)4 weakly, VitC was 7- to 19-fold effective in doing so over all the used concentrations (0–25 mM). A Fe2+—H2O2 solution mixed with human plasma showed a 6–10 times higher optical density (OD) of MDA or HNE in the presence of 5-HMF compared to VitC. The level of thiols was significantly decreased in the presence of higher VitC levels (1 mM: 198.4 ± 7.7 µM; 2 mM: 160.0 ± 13.4 µM) compared to equal 5-HMF amounts (2562 ± 7.8 µM or 242.4 ± 2.5 µM), whereas the usage of lower levels at 0.25 µM 5-HMF resulted in a significant decrease in thiols (272.4 ± 4.0 µM) compared to VitC (312.3 ± 19.7 µM). Both VitC and 5-HMF accelerated copper-mediated oxidation of LDL equally: while the TBARS levels from 4 h oxidized LDL reached 137.7 ± 12.3 nmol/mg, it was 1.7-fold higher using 6 mM VitC (259.9 ± 10.4 nmol/mg) or 6 mM 5-HMF (239.3 ± 10.2 nmol/mg). Conclusions: 5-HMF appeared to have more pro-oxidative potential compared to VitC by causing lipid peroxidation as well as protein oxidation.
Journal Article
Reduction of 3-Deoxyglucosone by Epigallocatechin Gallate Results Partially from an Addition Reaction: The Possible Mechanism of Decreased 5-Hydroxymethylfurfural in Epigallocatechin Gallate-Treated Black Garlic
by
Hsieh, Chang-Wei
,
Lee, Chieh-Hsiu
,
Cheng, Kuan-Chen
in
3-deoxyglucosone
,
5-Hydroxymethylfurfural
,
Aging
2021
5-Hydroxymethylfurfural (5-HMF) is a harmful substance generated during the processing of black garlic. Our previous research demonstrated that impregnation of black garlic with epigallocatechin gallate (EGCG) could reduce the formation of 5-HMF. However, there is still a lack of relevant research on the mechanism and structural identification of EGCG inhibiting the production of 5-HMF. In this study, an intermediate product of 5-HMF, 3-deoxyglucosone (3-DG), was found to be decreased in black garlic during the aging process, and impregnation with EGCG for 24 h further reduced the formation of 3-DG by approximately 60% in black garlic compared with that in the untreated control. The aging-mimicking reaction system of 3-DG + EGCG was employed to determine whether the reduction of 3-DG was the underlying mechanism of decreased 5-HMF formation in EGCG-treated black garlic. The results showed that EGCG accelerated the decrease of 3-DG and further attenuated 5-HMF formation, which may be caused by an additional reaction with 3-DG, as evidenced by LC-MS/MS analysis. In conclusion, this study provides new insights regarding the role of EGCG in blocking 5-HMF formation.
Journal Article
Enrichment of shortcrust pastry cookies with bee products: polyphenol profile, in vitro bioactive potential, heat-induced compounds content, colour parameters and sensory changes
by
Błaszczak, Wioletta
,
Jabłońska, Monika
,
Sawicki, Tomasz
in
692/700/2814
,
692/700/784
,
Acetylcholinesterase
2024
Bee products, including bee pollen (BP) and bee bread (BB) are natural sources that contain a diverse range of bioactive compounds. The objective of this study was to investigate the potential of BP and BB to enhance the functional properties of shortcrust pastry cookies. The impact on BP and BB on the colour parameters, polyphenolic compounds content, heat-induced compounds content (acrylamide, furfural, 5-hydroxymethylfurfural (HMF)), antioxidant properties, and inhibitory effects against advanced glycation end products (AGEs) formation and acetylcholinesterase (AChE) activity was examine by enriching cookies with 3 and 10% of BP or BB. The incorporation of BP or BB resulted in a notable darkening of the cookies. The spectroscopic and chromatographic analyses revealed that the cookies enriched with bee products exhibited an elevated content of phenolic compounds. The antioxidant activity (AA) of the enriched cookies exhibited an average increase of 2- to 3-fold in the ABTS test and 2-fold in the DPPH test. All cookies exhibited inhibitory potential against AGEs formation, witch inhibitory rates ranging from 10.64 to 46.22% in the BSA-GLU model and 1.75–19.33% in BSA-MGO model. The cookies enriched with 10% BP were characterised by to the highest level of AChE activity inhibition (13.72%). The incorporation of BB and BP resulted in elevated concentration of acrylamide, furfural, and HMF. Our findings suggest that bee products may serve as a valuable addition to food ingredients, significantly enhancing the functional properties of shortcrust pastry cookies. However, further investigation is necessary to address the increased level of heat-induced compounds.
Journal Article
Ameliorative Effects of 5-Hydroxymethyl-2-furfural (5-HMF) from Schisandra chinensis on Alcoholic Liver Oxidative Injury in Mice
2015
The aim of this paper is to evaluate the protective effect of 5-hydroxymethyl-2-furfural (5-HMF) on acute alcohol-induced liver oxidative injury in mice. 5-HMF, a maillard reaction product, was isolated from the fruits of Schisandra chinensis for animal experiments. Experimental ICR mice were pretreated with different doses of 5-HMF (7.5, 15, and 30 mg/kg) for seven days by gavage feeding. Biochemical markers and enzymatic antioxidants from serum and liver tissue were examined. Our results showed that the activities of ALT (alanine aminotransferase), AST (aspartate transaminase), TC (total cholesterol), TG (triglyceride), L-DLC (low density lipoprotein) in serum and the levels of MDA (malondialdehyde) in liver tissue, decreased significantly (p < 0.05) in the 5-HMF-treated group compared with the alcohol group. On the contrary, enzymatic antioxidants CAT (catalase), GSH-Px (glutathione peroxidase), and GSH SOD (superoxide dismutase) were markedly elevated in liver tissue treated with 5-HMF (p < 0.05). Furthermore, the hepatic levels of pro-inflammatory response marker tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) were significantly suppressed (p < 0.05). Histopathological examination revealed that 5-HMF (30 mg/kg) pretreatment noticeably prevented alcohol-induced hepatocyte apoptosis and fatty degeneration. It is suggested that the hepatoprotective effects exhibited by 5-HMF on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.
Journal Article
Role of Furfural and 5-Methyl-2-furfural in Glucose-Induced Inhibition of 2-Amino-1-methyl-6-phenylimidazo4,5-bpyridine (PhIP) Formation in Chemical Models and Pork Patties
by
Zhao, Xiaolei
,
Lv, Lei
,
Zheng, Zhuyu
in
2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)
,
5-methyl-2-furfural
,
Acetaldehyde - analogs & derivatives
2025
The effects of furfural and 5-methyl-2-furfural produced by the Maillard reaction on PhIP formation were investigated in chemical models and roasted pork patties. In the chemical models, the results indicated that increasing levels of furfural (r = −0.7338, R2 = 0.9557) and 5-methyl-2-furfural (r = −0.7959, R2 = 0.9864) significantly reduced PhIP formation, displaying a strong linear correlation. The effects of furfural and 5-methyl-2-furfural on the precursors of phenylalanine (Phe) and phenylacetaldehyde showed a significant reduction in the Phe level, while the level of phenylacetaldehyde was not increased. In addition, neither furfural nor 5-methyl-2-furfural could significantly reduce creatinine or PhIP. Further mechanism studies showed that furfural (5-methyl-2-furfural) directly captured Phe to form the corresponding Schiff base compounds a (2-((furan-2-ylmethylene) amino)-3-phenylpropanoic acid) and b (2-(((5-methylfuran-2-yl)methylene)amino)-3-phenylpropanoic acid). This process reduced the production of phenylacetaldehyde, thereby inhibiting the PhIP formation pathway. More importantly, these two compounds were detected in roasted pork patties to which glucose was added. The above pathway was finally confirmed in roasted pork patties. These results revealed that furfural and 5-methyl-2-furfural, formed during the Maillard reaction, play a significant role in inhibiting the formation of PhIP by reacting with Phe.
Journal Article
Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF
2020
The industrial yeast Saccharomyces cerevisiae has a plastic genome with a great flexibility in adaptation to varied conditions of nutrition, temperature, chemistry, osmolarity, and pH in diversified applications. A tolerant strain against 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) was successfully obtained previously by adaptation through environmental engineering toward development of the next-generation biocatalyst. Using a time-course comparative transcriptome analysis in response to a synergistic challenge of furfural-HMF, here we report tolerance phenotypes of pathway-based transcriptional profiles as components of the adapted defensive system for the tolerant strain NRRL Y-50049. The newly identified tolerance phenotypes were involved in biosynthesis superpathway of sulfur amino acids, defensive reduction-oxidation reaction process, cell wall response, and endogenous and exogenous cellular detoxification. Key transcription factors closely related to these pathway-based components, such as Yap1, Met4, Met31/32, Msn2/4, and Pdr1/3, were also presented. Many important genes in Y-50049 acquired an enhanced transcription background and showed continued increased expressions during the entire lag phase against furfural-HMF. Such signature expressions distinguished tolerance phenotypes of Y-50049 from the innate stress response of its progenitor NRRL Y-12632, an industrial type strain. The acquired yeast tolerance is believed to be evolved in various mechanisms at the genomic level. Identification of legitimate tolerance phenotypes provides a basis for continued investigations on pathway interactions and dissection of mechanisms of yeast tolerance and adaptation at the genomic level.
Journal Article
Kinetic assay shows that increasing red cell volume could be a treatment for sickle cell disease
by
Henry, Eric R.
,
Jones-Straehle, Stacy
,
Hofrichter, James
in
Anemia, Sickle Cell - therapy
,
Antisickling Agents - pharmacology
,
Bioassays
2017
Although it has been known for more than 60 years that the cause of sickle cell disease is polymerization of a hemoglobin mutant, hydroxyurea is the only drug approved for treatment by the US Food and Drug Administration. This drug, however, is only partially successful, and the discovery of additional drugs that inhibit fiber formation has been hampered by the lack of a sensitive and quantitative cellular assay. Here, we describe such a method in a 96-well plate format that is based on laser-induced polymerization in sickle trait cells and robust, automated image analysis to detect the precise time at which fibers distort (“sickle”) the cells. With this kinetic method, we show that small increases in cell volume to reduce the hemoglobin concentration can result in therapeutic increases in the delay time prior to fiber formation. We also show that, of the two drugs (AES103 and GBT440) in clinical trials that inhibit polymerization by increasing oxygen affinity, one of them (GBT440) also inhibits sickling in the absence of oxygen by two additional mechanisms.
Journal Article
Simultaneous Determination of Six Compounds in Destructive Distillation Extracts of Hawthorn Seed by GC-MS and Evaluation of Their Antimicrobial Activity
by
Li, Peibo
,
Liu, Chong
,
Su, Weiwei
in
Anti-Bacterial Agents - chemistry
,
Anti-Bacterial Agents - pharmacology
,
Antimicrobial agents
2019
Hawthorn seed can be used to produce various bioactive compounds through destructive distillation. In this study, an accurate and feasible analytical method based on a gas chromatography mass spectrometer (GC-MS) was developed for simultaneous determination of six major compounds (contributing to more than 3% in total peak area) in destructive distillation extracts of hawthorn seed collected at different temperatures ranging from 150 to 270 °C. Then, a broth microdilution method coupled with grey correlation analysis was engaged in the evaluation of their antimicrobial activities and the screening of primarily active compounds. Results indicate that the extract collected from 211 to 230 °C had the highest content of six major compounds (furfural, 2-methoxyphenol, 2-methoxy-4-methylphenol, 4-ethyl-2-methoxyphenol, 2,6-dimethoxyphenol, and 5-tertbutylpyrogallol) and the strongest antibacterial activity. Besides, 2,6-dimethoxyphenol was found to be a potential compound in inhibiting the growth of vaginitis pathogens. This study provided an optimum temperature for the destructive distillation of hawthorn seed, reducing the waste of energy, and saving the cost of production in the hawthorn industry.
Journal Article
Analysis of the response of the cell membrane of Saccharomyces cerevisiae during the detoxification of common lignocellulosic inhibitors
by
Peng, Chuantao
,
Junicke, Helena
,
López, Pau Cabaneros
in
631/1647/1407/1492
,
631/61/168
,
631/61/252
2021
Gaining an in-depth understanding of the response of
Saccharomyces cerevisiae
to the different inhibitors generated during the pretreatment of lignocellulosic material is driving the development of new strains with higher inhibitor tolerances. The objective of this study is to assess, using flow cytometry, how three common inhibitors (vanillin, furfural, and acetic acid) affect the membrane potential, the membrane permeability and the concentration of reactive oxygen species (ROS) during the different fermentations. The membrane potential decreased during the detoxification phase and reflected on the different mechanisms of the toxicity of the inhibitors. While vanillin and furfural caused a metabolic inhibition and a gradual depolarization, acetic acid toxicity was related to fast acidification of the cytosol, causing an immediate depolarization. In the absence of acetic acid, ethanol increased membrane permeability, indicating a possible acquired tolerance to ethanol due to an adaptive response to acetic acid. The intracellular ROS concentration also increased in the presence of the inhibitors, indicating oxidative stress. Measuring these features with flow cytometry allows a real-time assessment of the stress of a cell culture, which can be used in the development of new yeast strains and to design new propagation strategies to pre-adapt the cell cultures to the inhibitors.
Journal Article