Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Source
      Source
      Clear All
      Source
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "GA-SVR machine le"
Sort by:
Optimization of the thermophysical properties of the thermal barrier coating materials based on GA-SVR machine learning method: illustrated with ZrO2 doped DyTaO4 system
It is a critical issue to reduce the thermal conductivity and increase the thermal expansion coefficient of ceramic thermal barrier coating (TBC) materials in the course of their utilization. To synthesize samples with different composition and measure their thermal conductivity by the traditional experimental approaches is time-consuming and expensive. Most classic and empirical models work inefficiently and inaccurately when researchers attempt to predict the thermophysical properties of TBC materials. In this research project, we tentatively exploit a Genetic Algorithm-Support Vector Regression (GA-SVR) machine learning model to study the thermophysical properties, illustrated with the potential TBC materials ZrO2 doped DyTaO4, which has resulted in the lowest thermal conductivity in rare earth tantalates RETaO4 system. Meanwhile, we employ statistical parameters of correlation coefficient (R2) and mean square error (MSE) to evaluate the accuracy and reliability of the model. The results reveal that this model has brought about high correlation coefficients of thermal conductivity and thermal expansion coefficient (99.8% and 99.9%, respectively), while the MSE values are 0.00052 and 0.00019, respectively. The doping concentration of ZrO2 was optimized to reach as low as 0.085–0.095, so as to reduce their thermal conductivity further and increase their thermal expansion. This model provides an accurate and reliable option for researchers to design ceramic thermal barrier coating materials.