Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
915
result(s) for
"GABA inhibition"
Sort by:
Spike‐and‐wave discharges of absence seizures in a sleep waves‐constrained corticothalamic model
2024
Aims Recurrent network activity in corticothalamic circuits generates physiological and pathological EEG waves. Many computer models have simulated spike‐and‐wave discharges (SWDs), the EEG hallmark of absence seizures (ASs). However, these models either provided detailed simulated activity only in a selected territory (i.e., cortical or thalamic) or did not test whether their corticothalamic networks could reproduce the physiological activities that are generated by these circuits. Methods Using a biophysical large‐scale corticothalamic model that reproduces the full extent of EEG sleep waves, including sleep spindles, delta, and slow (<1 Hz) waves, here we investigated how single abnormalities in voltage‐ or transmitter‐gated channels in the neocortex or thalamus led to SWDs. Results We found that a selective increase in the tonic γ‐aminobutyric acid type A receptor (GABA‐A) inhibition of first‐order thalamocortical (TC) neurons or a selective decrease in cortical phasic GABA‐A inhibition is sufficient to generate ~4 Hz SWDs (as in humans) that invariably start in neocortical territories. Decreasing the leak conductance of higher‐order TC neurons leads to ~7 Hz SWDs (as in rodent models) while maintaining sleep spindles at 7–14 Hz. Conclusion By challenging key features of current mechanistic views, this simulated ictal corticothalamic activity provides novel understanding of ASs and makes key testable predictions. Using a biophysical large‐scale corticothalamic model that reproduces the EEG sleep waves, including sleep spindles, delta, and slow (<0.1 Hz) waves, we investigated how single abnormalities in voltage‐ or transmitter‐gated channels in the neocortex or thalamus lead to spike‐and‐wave discharges (SWDs) of absence seizures in the EEG. We found that a selective increase in the tonic GABA‐A inhibition of first‐order thalamocortical (TC) neurons or a selective decrease in cortical phasic GABA‐A inhibition is sufficient to generate ~4 Hz SWDs (as in humans) that invariably start in neocortical territories. Moreover, decreasing the leak conductance of higher‐order TC neurons leads to ~7 Hz SWDs (as in rodent models) while maintaining sleep spindles at 7–14 Hz.
Journal Article
Development and characterization of a scalable calcium imaging assay using human iPSC-derived neurons
2025
Neuroscience drug discovery is challenged by the brain’s structural and cell-type complexity, which is difficult to model in cellular systems compatible with high-throughput screening methods. Calcium oscillation assays, that harness neurons’ intrinsic capability to develop functional neural networks in cell culture, are currently the closest cellular models with a relevant functional endpoint to model human neuronal circuitry in a dish. Here we further developed this useful assay towards scalable drug discovery applications. We show the importance of defined neuron-to-astrocyte ratios for optimal cellular distribution and surface adherence in HTS-compatible cell culture vessels and how the cell type ratios affect network firing patterns. Increasing the neuron density resulted in decreased network spike frequencies, but increased network spike amplitudes. We identified DAPT, a molecule previously shown to promote neuronal maturation and synapse formation, as a negative regulator of astrocyte viability. Furthermore, inclusion of GABAergic neurons in the cocultures increased the network spike frequency while reducing network spike amplitudes. The GABAA receptor antagonist bicuculline did not affect network spike frequency, but increased network spike amplitudes. In order to access local field activity in an automated and scalable calcium imaging environment, we developed a pixel-based analysis for plate reader data. This method revealed that the effect of GABAergic neurons and bicuculline was restricted to local field calcium activity that coincided with synchronized network spikes. Our observations are consistent with previous findings suggesting that the presence of GABAergic neurons decreases synchronization and network spike participation of local neuronal activity, thus potentially echoing aspects of GABA action in vivo, and dysregulation thereof in pathological conditions.
Journal Article
Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity because of decreased GABAergic inhibition
by
Turner, Jeremy G
,
Shepherd, Gordon M.G
,
Middleton, Jason W
in
Animals
,
axons
,
Axons - physiology
2011
Tinnitus has been associated with increased spontaneous and evoked activity, increased neural synchrony, and reorganization of tonotopic maps of auditory nuclei. However, the neurotransmitter systems mediating these changes are poorly understood. Here, we developed an in vitro assay that allows us to evaluate the roles of excitation and inhibition in determining the neural correlates of tinnitus. To measure the magnitude and spatial spread of evoked circuit activity, we used flavoprotein autofluorescence (FA) imaging, a metabolic indicator of neuronal activity. We measured FA responses after electrical stimulation of glutamatergic axons in slices containing the dorsal cochlear nucleus, an auditory brainstem nucleus hypothesized to be crucial in the triggering and modulation of tinnitus. FA imaging in dorsal cochlear nucleus brain slices from mice with behavioral evidence of tinnitus (tinnitus mice) revealed enhanced evoked FA response at the site of stimulation and enhanced spatial propagation of FA response to surrounding sites. Blockers of GABAergic inhibition enhanced FA response to a greater extent in control mice than in tinnitus mice. Blockers of excitation decreased FA response to a similar extent in tinnitus and control mice. These findings indicate that auditory circuits in mice with behavioral evidence of tinnitus respond to stimuli in a more robust and spatially distributed manner because of a decrease in GABAergic inhibition.
Journal Article
Presynaptic inhibition of dopamine neurons controls optimistic bias
2021
Regulation of reward signaling in the brain is critical for appropriate judgement of the environment and self. In
Drosophila
, the protocerebral anterior medial (PAM) cluster dopamine neurons mediate reward signals. Here, we show that localized inhibitory input to the presynaptic terminals of the PAM neurons titrates olfactory reward memory and controls memory specificity. The inhibitory regulation was mediated by metabotropic gamma-aminobutyric acid (GABA) receptors clustered in presynaptic microdomain of the PAM boutons. Cell type-specific silencing the GABA receptors enhanced memory by augmenting internal reward signals. Strikingly, the disruption of GABA signaling reduced memory specificity to the rewarded odor by changing local odor representations in the presynaptic terminals of the PAM neurons. The inhibitory microcircuit of the dopamine neurons is thus crucial for both reward values and memory specificity. Maladaptive presynaptic regulation causes optimistic cognitive bias.
Journal Article
The Effect of Antibiotics on the Nervous System: Importance for Anesthesiology and Intensive Care
by
Oszytko, Julia
,
Radkowski, Paweł
,
Sobolewski, Kamil
in
Abnormalities
,
Amides
,
Aminoglycosides
2025
Background: Due to the high prevalence of severe infections, antibiotics are frequently administered in anaesthesia and intensive care units. Despite their therapeutic efficacy, several antibiotics exhibit neurotoxic potential, resulting in central and peripheral neurological complications in patients. This review aims to summarise the current evidence on antibiotic-induced neurotoxicity, particularly in critical care settings. Methods: A comprehensive literature analysis was performed to assess the neurotoxic profiles, underlying mechanisms, and clinical manifestations associated with different antibiotic classes, including beta-lactams, fluoroquinolones, macrolides, aminoglycosides, and others. Results: Beta-lactam antibiotics (especially cephalosporins and carbapenems) are strongly associated with seizures, encephalopathy, and EEG abnormalities, mainly through GABAergic inhibition and mitochondrial dysfunction. Fluoroquinolones and macrolides can cause psychosis, insomnia, and neuropathy via NMDA activation and oxidative stress. Linezolid carries the risk of serotonin syndrome and optic neuropathy, while glycopeptides and aminoglycosides are primarily associated with ototoxicity. Risk factors include advanced age, renal or hepatic impairment, and high serum drug levels. Conclusions: The neurotoxic potential of antibiotics is a critical but under-recognised aspect of pharmacotherapy in intensive care. Improved awareness, pharmacovigilance, dose adjustment, and drug monitoring are crucial for mitigating adverse neurological effects.
Journal Article
Reduced brain somatostatin in mood disorders: a common pathophysiological substrate and drug target?
2013
Our knowledge of the pathophysiology of affect dysregulation has progressively increased, but the pharmacological treatments remain inadequate. Here, we summarize the current literature on deficits in somatostatin, an inhibitory modulatory neuropeptide, in major depression and other neurological disorders that also include mood disturbances. We focus on direct evidence in the human postmortem brain, and review rodent genetic and pharmacological studies probing the role of the somatostatin system in relation to mood. We also briefly go over pharmacological developments targeting the somatostatin system in peripheral organs and discuss the challenges of targeting the brain somatostatin system. Finally, the fact that somatostatin deficits are frequently observed across neurological disorders suggests a selective cellular vulnerability of somatostatin-expressing neurons. Potential cell intrinsic factors mediating those changes are discussed, including nitric oxide induced oxidative stress, mitochondrial dysfunction, high inflammatory response, high demand for neurotrophic environment, and overall aging processes. Together, based on the co-localization of somatostatin with gamma-aminobutyric acid (GABA), its presence in dendritic-targeting GABA neuron subtypes, and its temporal-specific function, we discuss the possibility that deficits in somatostatin play a central role in cortical local inhibitory circuit deficits leading to abnormal corticolimbic network activity and clinical mood symptoms across neurological disorders.
Journal Article
Extrasynaptic GABAA receptors in mediodorsal thalamic nucleus modulate fear extinction learning
2014
Background
The gamma-amino-butyric acid (GABA) system is a critical mediator of fear extinction process. GABA can induce “phasic” or “tonic” inhibition in neurons through synaptic or extrasynaptic GABA
A
receptors, respectively. However, role of the thalamic “tonic GABA inhibition” in cognition has not been explored. We addressed this issue in extinction of conditioned fear in mice.
Results
Here, we show that GABA
A
receptors in the mediodorsal thalamic nucleus (MD) modulate fear extinction. Microinjection of gabazine, a GABA
A
receptor antagonist, into the MD decreased freezing behavior in response to the conditioned stimulus and thus facilitated fear extinction. Interestingly, microinjection of THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol), a preferential agonist for the δ-subunit of extrasynaptic GABA
A
receptors, into the MD attenuated fear extinction. In the opposite direction, an MD-specific knock-out of the extrasynaptic GABA
A
receptors facilitated fear extinction.
Conclusions
Our results suggest that “tonic GABA inhibition” mediated by extrasynaptic GABA
A
receptors in MD neurons, suppresses fear extinction learning. These results raise a possibility that pharmacological control of tonic mode of GABA
A
receptor activation may be a target for treatment of anxiety disorders like post-traumatic stress disorder.
Journal Article
Learning-related long-term potentiation of inhibitory synapses in the cerebellar cortex
by
Scelfo, Bibiana
,
Sacchetti, Benedetto
,
Strata, Piergiorgio
in
Amygdala
,
Animals
,
Associative learning
2008
Despite the widespread distribution of inhibitory synapses throughout the central nervous system, plasticity of inhibitory synapses related to associative learning has never been reported. In the cerebellum, the neural correlate of fear memory is provided by a long-term potentiation (LTP) of the excitatory synapse between the parallel fibers (PFs) and the Purkinje cell (PC). In this article, we provide evidence that inhibitory synapses in the cerebellar cortex also are affected by fear conditioning. Whole-cell patch-clamp recordings of spontaneous and miniature GABAergic events onto the PC show that the frequency but not the amplitude of these events is significantly greater up to 24 h after the conditioning. Adequate levels of excitation and inhibition are required to maintain the temporal fidelity of a neuronal network. Such fidelity can be evaluated by determining the time window for multiple input coincidence detection. We found that, after fear learning, PCs are able to integrate excitatory inputs with greater probability within short delays, but the width of the whole window is unchanged. Therefore, excitatory LTP provides a more effective detection, and inhibitory potentiation serves to maintain the time resolution of the system.
Journal Article
Relaxation of synaptic inhibitory events as a compensatory mechanism in fetal SOD spinal motor networks
by
Cazenave, William
,
Laupénie, Amandine
,
Hodeib, Fara
in
ALS disease
,
Amyotrophic lateral sclerosis
,
Amyotrophic Lateral Sclerosis - genetics
2019
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting motor neurons (MNs) during late adulthood. Here, with the aim of identifying early changes underpinning ALS neurodegeneration, we analyzed the GABAergic/glycinergic inputs to E17.5 fetal MNs from SOD1 G93A (SOD) mice in parallel with chloride homeostasis. Our results show that IPSCs are less frequent in SOD animals in accordance with a reduction of synaptic VIAAT-positive terminals. SOD MNs exhibited an E GABAAR 10 mV more depolarized than in WT MNs associated with a KCC2 reduction. Interestingly, SOD GABAergic/glycinergic IPSCs and evoked GABA A R-currents exhibited a slower decay correlated to elevated [Cl - ] i . Computer simulations revealed that a slower relaxation of synaptic inhibitory events acts as compensatory mechanism to strengthen GABA/glycine inhibition when E GABAAR is more depolarized. How such mechanisms evolve during pathophysiological processes remain to be determined, but our data indicate that at least SOD1 familial ALS may be considered as a neurodevelopmental disease.
Journal Article
Stimulus-specific adaptation and deviance detection in the inferior colliculus
2013
Deviancy detection in the continuous flow of sensory information into the central nervous system is of vital importance for animals. The task requires neuronal mechanisms that allow for an efficient representation of the environment by removing statistically redundant signals. Recently, the neuronal principles of auditory deviance detection have been approached by studying the phenomenon of stimulus-specific adaptation (SSA). SSA is a reduction in the responsiveness of a neuron to a common or repetitive sound while the neuron remains highly sensitive to rare sounds (Ulanovsky et al., 2003). This phenomenon could enhance the saliency of unexpected, deviant stimuli against a background of repetitive signals. SSA shares many similarities with the evoked potential known as the \"mismatch negativity,\" (MMN) and it has been linked to cognitive process such as auditory memory and scene analysis (Winkler et al., 2009) as well as to behavioral habituation (Netser et al., 2011). Neurons exhibiting SSA can be found at several levels of the auditory pathway, from the inferior colliculus (IC) up to the auditory cortex (AC). In this review, we offer an account of the state-of-the art of SSA studies in the IC with the aim of contributing to the growing interest in the single-neuron electrophysiology of auditory deviance detection. The dependence of neuronal SSA on various stimulus features, e.g., probability of the deviant stimulus and repetition rate, and the roles of the AC and inhibition in shaping SSA at the level of the IC are addressed.
Journal Article