Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
311,820
result(s) for
"GENES AND GENOMES"
Sort by:
Hub genes and key pathways of traumatic brain injury: bioinformatics analysis and in vivo validation
by
Feng, Zhen
,
Zhong, Ling-Yang
,
Jiang, Jian
in
Bioinformatics
,
bioinformatics; degs; differentially expressed genes; gene ontology; hub genes; inflammation; kyoto encyclopedia of genes and genomes; molecular mechanism; traumatic brain injury
,
Brain damage
2020
The exact mechanisms associated with secondary brain damage following traumatic brain injury (TBI) remain unclear; therefore, identifying the critical molecular mechanisms involved in TBI is essential. The mRNA expression microarray GSE2871 was downloaded from the Gene Expression Omnibus (GEO) repository. GSE2871 comprises a total of 31 cerebral cortex samples, including two post-TBI time points. The microarray features eight control and seven TBI samples, from 4 hours post-TBI, and eight control and eight TBI samples from 24 hours post-TBI. In this bioinformatics-based study, 109 and 66 differentially expressed genes (DEGs) were identified in a Sprague-Dawley (SD) rat TBI model, 4 and 24 hours post-TBI, respectively. Functional enrichment analysis showed that the identified DEGs were significantly enriched in several terms, such as positive regulation of nuclear factor-κB transcription factor activity, mitogen-activated protein kinase signaling pathway, negative regulation of apoptotic process, and tumor necrosis factor signaling pathway. Moreover, the hub genes with high connectivity degrees were primarily related to inflammatory mediators. To validate the top five hub genes, a rat model of TBI was established using the weight-drop method, and real-time quantitative polymerase chain reaction analysis of the cerebral cortex was performed. The results showed that compared with control rats, Tnf-α, c-Myc, Spp1, Cxcl10, Ptprc, Egf, Mmp9, and Lcn2 were upregulated, and Fn1 was downregulated in TBI rats. Among these hub genes, Fn1, c-Myc, and Ptprc may represent novel biomarkers or therapeutic targets for TBI. These identified pathways and key genes may provide insights into the molecular mechanisms of TBI and provide potential treatment targets for patients with TBI. This study was approved by the Experimental Animal Ethics Committee of the First Affiliated Hospital of Nanchang University, China (approval No. 003) in January 2016.
Journal Article
A promoter-level mammalian expression atlas
by
Jørgensen, Mette
,
Plessy, Charles
,
Chierici, Marco
in
631/114/2114
,
631/208/200
,
631/337/2019
2014
Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.
A study from the FANTOM consortium using single-molecule cDNA sequencing of transcription start sites and their usage in human and mouse primary cells, cell lines and tissues reveals insights into the specificity and diversity of transcription patterns across different mammalian cell types.
Mapping the human transcription
FANTOM5 (standing for functional annotation of the mammalian genome 5) is the fifth major stage of a major international collaboration that aims to dissect the transcriptional regulatory networks that define every human cell type. Two Articles in this issue of
Nature
present some of the project's latest results. The first paper uses the FANTOM5 panel of tissue and primary cell samples to define an atlas of active,
in vivo
bidirectionally transcribed enhancers across the human body. These authors show that bidirectional capped RNAs are a signature feature of active enhancers and identify more than 40,000 enhancer candidates from over 800 human cell and tissue samples. The enhancer atlas is used to compare regulatory programs between different cell types and identify disease-associated regulatory SNPs, and will be a resource for studies on cell-type-specific enhancers. In the second paper, single-molecule sequencing is used to map human and mouse transcription start sites and their usage in a panel of distinct human and mouse primary cells, cell lines and tissues to produce the most comprehensive mammalian gene expression atlas to date. The data provide a plethora of insights into open reading frames and promoters across different cell types in addition to valuable annotation of mammalian cell-type-specific transcriptomes.
Journal Article
Bioinformatic identification of key candidate genes and pathways in axon regeneration after spinal cord injury in zebrafish
by
Feng, Shi-Qing
,
Li, Yan
,
Cao, Fu-Jiang
in
Antibiotics
,
axonal regeneration; differentially expressed genes; focal adhesions; Gene Ontology; Kyoto Encyclopedia of Genes and Genomes; neural regeneration; protein-protein interaction network; signaling pathway; spectrin; tight junctions; transforming growth factor beta; Wnt signaling pathway
,
Axons
2020
Zebrafish and human genomes are highly homologous; however, despite this genomic similarity, adult zebrafish can achieve neuronal proliferation, regeneration and functional restoration within 6-8 weeks after spinal cord injury, whereas humans cannot. To analyze differentially expressed zebrafish genes between axon-regenerated neurons and axon-non-regenerated neurons after spinal cord injury, and to explore the key genes and pathways of axonal regeneration after spinal cord injury, microarray GSE56842 was analyzed using the online tool, GEO2R, in the Gene Expression Omnibus database. Gene ontology and protein-protein interaction networks were used to analyze the identified differentially expressed genes. Finally, we screened for genes and pathways that may play a role in spinal cord injury repair in zebrafish and mammals. A total of 636 differentially expressed genes were obtained, including 255 up-regulated and 381 down-regulated differentially expressed genes in axon-regenerated neurons. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment results were also obtained. A protein-protein interaction network contained 480 node genes and 1976 node connections. We also obtained the 10 hub genes with the highest correlation and the two modules with the highest score. The results showed that spectrin may promote axonal regeneration after spinal cord injury in zebrafish. Transforming growth factor beta signaling may inhibit repair after spinal cord injury in zebrafish. Focal adhesion or tight junctions may play an important role in the migration and proliferation of some cells, such as Schwann cells or neural progenitor cells, after spinal cord injury in zebrafish. Bioinformatic analysis identified key candidate genes and pathways in axonal regeneration after spinal cord injury in zebrafish, providing targets for treatment of spinal cord injury in mammals.
Journal Article
Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation
2010
Eukaryotic cytosine methylation represses transcription but also occurs in the bodies of active genes, and the extent of methylation biology conservation is unclear. We quantified DNA methylation in 17 eukaryotic genomes and found that gene body methylation is conserved between plants and animals, whereas selective methylation of transposons is not. We show that methylation of plant transposons in the CHG context extends to green algae and that exclusion of histone H2A.Z from methylated DNA is conserved between plants and animals, and we present evidence for RNA-directed DNA methylation of fungal genes. Our data demonstrate that extant DNA methylation systems are mosaics of conserved and derived features, and indicate that gene body methylation is an ancient property of eukaryotic genomes.
Journal Article
Mechanisms of change in gene copy number
by
Rosenberg, Susan M.
,
Hastings, P. J.
,
Lupski, James R.
in
Agriculture
,
Animal Genetics and Genomics
,
Biological and medical sciences
2009
Key Points
Copy number variants (CNVs) arise by homologous recombination (HR) between repeated sequences (recurrent CNVs) or by non-homologous recombination mechanisms that occur throughout the genome (non-recurrent CNVs).
Non-recurrent CNVs frequently show microhomology at their end-points, and can have a complex structure.
The locus-specific mutation frequencies for copy number variation and other structural changes are two to four orders of magnitude greater than for point mutations.
HR mechanisms generally achieve accurate repair of DNA damage.
Double-stranded breaks are repaired by HR or by end-joining mechanisms, which can be non-homologous.
Broken replication forks with single double-stranded ends are also repaired by HR.
There is evidence that repair of broken replication forks underlies some non-homologous recombination.
Repair of broken forks in stressed cells could cause non-homologous repair because of a downregulation of HR proteins induced by stress.
Models are presented for mechanisms by which stress might induce non-homologous events leading to copy number variation.
Copy number variation is a major source of variation between individuals that is increasingly recognized as influencing genome evolution and human disease. But how does it arise? The authors discuss predicted mechanisms of copy number change, including non-homologous end-joining and non-homologous repair of broken replication forks.
Deletions and duplications of chromosomal segments (copy number variants, CNVs) are a major source of variation between individual humans and are an underlying factor in human evolution and in many diseases, including mental illness, developmental disorders and cancer. CNVs form at a faster rate than other types of mutation, and seem to do so by similar mechanisms in bacteria, yeast and humans. Here we review current models of the mechanisms that cause copy number variation. Non-homologous end-joining mechanisms are well known, but recent models focus on perturbation of DNA replication and replication of non-contiguous DNA segments. For example, cellular stress might induce repair of broken replication forks to switch from high-fidelity homologous recombination to non-homologous repair, thus promoting copy number change.
Journal Article
Protein microarray analysis of cytokine expression changes in distal stumps after sciatic nerve transection
by
Zhao, Qing
,
Tang, He
,
Han, Gong-Hai
in
Chemokines
,
Cytokines
,
cytokines; distal stump; gene ontology; Kyoto Encyclopedia of Genes and Genomes pathway; peripheral nerve injury; protein microarray; protein-protein interaction network; Wallerian degeneration
2020
A large number of chemokines, cytokines, other trophic factors and the extracellular matrix molecules form a favorable microenvironment for peripheral nerve regeneration. This microenvironment is one of the major factors for regenerative success. Therefore, it is important to investigate the key molecules and regulators affecting nerve regeneration after peripheral nerve injury. However, the identities of specific cytokines at various time points after sciatic nerve injury have not been determined. The study was performed by transecting the sciatic nerve to establish a model of peripheral nerve injury and to analyze, by protein microarray, the expression of different cytokines in the distal nerve after injury. Results showed a large number of cytokines were up-regulated at different time points post injury and several cytokines, e.g., ciliary neurotrophic factor, were downregulated. The construction of a protein-protein interaction network was used to screen how the proteins interacted with differentially expressed cytokines. Kyoto Encyclopedia of Genes and Genomes pathway and Gene ontology analyses indicated that the differentially expressed cytokines were significantly associated with chemokine signaling pathways, Janus kinase/signal transducers and activators of transcription, phosphoinositide 3-kinase/protein kinase B, and notch signaling pathway. The cytokines involved in inflammation, immune response and cell chemotaxis were up-regulated initially and the cytokines involved in neuronal apoptotic processes, cell-cell adhesion, and cell proliferation were up-regulated at 28 days after injury. Western blot analysis showed that the expression and changes of hepatocyte growth factor, glial cell line-derived neurotrophic factor and ciliary neurotrophic factor were consistent with the results of protein microarray analysis. The results provide a comprehensive understanding of changes in cytokine expression and changes in these cytokines and classical signaling pathways and biological functions during Wallerian degeneration, as well as a basis for potential treatments of peripheral nerve injury. The study was approved by the Institutional Animal Care and Use Committee of the Chinese PLA General Hospital, China (approval number: 2016-x9-07) in September 2016.
Journal Article
Spatiotemporal microRNA profile in peripheral nerve regeneration: miR-138 targets vimentin and inhibits Schwann cell migration and proliferation
by
Morgan, Shannon
,
Teebagy, Patrick
,
Rieger-Christ, Kimberly
in
Analysis
,
Care and treatment
,
Cell adhesion & migration
2018
While the peripheral nervous system has regenerative ability, restoration of sufficient function remains a challenge. Vimentin has been shown to be localized in axonal growth fronts and associated with nerve regeneration, including myelination, neuroplasticity, kinase signaling in nerve axoplasm, and cell migration; however, the mechanisms regulating its expression within Schwann cell (SC) remain unexplored. The aim of this study was to profile the spatial and temporal expression profile of microRNA (miRNA) in a regenerating rat sciatic nerve after transection, and explore the potential role of miR-138-5p targeting vimentin in SC proliferation and migration. A rat sciatic nerve transection model, utilizing a polyethylene nerve guide, was used to investigate miRNA expression at 7, 14, 30, 60, and 90 days during nerve regeneration. Relative levels of miRNA expression were determined using microarray analysis and subsequently validated with quantitative real-time polymerase chain reaction. In vitro assays were conducted with cultured Schwann cells transfected with miRNA mimics and assessed for migratory and proliferative potential. The top seven dysregulated miRNAs reported in this study have been implicated in cell migration elsewhere, and GO and KEGG analyses predicted activities essential to wound healing. Transfection of one of these, miRNA-138-5p, into SCs reduced cell migration and proliferation. miR-138-5p has been shown to directly target vimentin in cancer cells, and the luciferase assay performed here in rat Schwann cells confirmed it. These results detail a role of miR-138-5p in rat peripheral nerve regeneration and expand on reports of it as an important regulator in the peripheral nervous system.
Journal Article
Bidirectional promoters generate pervasive transcription in yeast
by
Huber, Wolfgang
,
Steinmetz, Lars M
,
Stutz, Francoise
in
bidirectional promoters
,
Biological and medical sciences
,
classification
2009
Genome-wide pervasive transcription has been reported in many eukaryotic organisms revealing a highly interleaved transcriptome organization that involves hundreds of previously unknown non-coding RNAs. These recently identified transcripts either exist stably in cells (stable unannotated transcripts, SUTs) or are rapidly degraded by the RNA surveillance pathway (cryptic unstable transcripts, CUTs). One characteristic of pervasive transcription is the extensive overlap of SUTs and CUTs with previously annotated features, which prompts questions regarding how these transcripts are generated, and whether they exert function. Single-gene studies have shown that transcription of SUTs and CUTs can be functional, through mechanisms involving the generated RNAs or their generation itself. So far, a complete transcriptome architecture including SUTs and CUTs has not been described in any organism. Knowledge about the position and genome-wide arrangement of these transcripts will be instrumental in understanding their function. Here we provide a comprehensive analysis of these transcripts in the context of multiple conditions, a mutant of the exosome machinery and different strain backgrounds of Saccharomyces cerevisiae. We show that both SUTs and CUTs display distinct patterns of distribution at specific locations. Most of the newly identified transcripts initiate from nucleosome-free regions (NFRs) associated with the promoters of other transcripts (mostly protein-coding genes), or from NFRs at the 3' ends of protein-coding genes. Likewise, about half of all coding transcripts initiate from NFRs associated with promoters of other transcripts. These data change our view of how a genome is transcribed, indicating that bidirectionality is an inherent feature of promoters. Such an arrangement of divergent and overlapping transcripts may provide a mechanism for local spreading of regulatory signals--that is, coupling the transcriptional regulation of neighbouring genes by means of transcriptional interference or histone modification.
Journal Article
Different protein expression patterns in rat spinal nerves during Wallerian degeneration assessed using isobaric tags for relative and absolute quantitation proteomics profiling
by
Guo, Quan-Yi
,
Wang, Yu
,
Xu, Wen-Jing
in
Cell adhesion & migration
,
Chromatography
,
Composition
2020
Sensory and motor nerve fibers of peripheral nerves have different anatomies and regeneration functions after injury. To gain a clear understanding of the biological processes behind these differences, we used a labeling technique termed isobaric tags for relative and absolute quantitation to investigate the protein profiles of spinal nerve tissues from Sprague-Dawley rats. In response to Wallerian degeneration, a total of 626 proteins were screened in sensory nerves, of which 368 were upregulated and 258 were downregulated. In addition, 637 proteins were screened in motor nerves, of which 372 were upregulated and 265 were downregulated. All identified proteins were analyzed using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of bioinformatics, and the presence of several key proteins closely related to Wallerian degeneration were tested and verified using quantitative real-time polymerase chain reaction analyses. The differentially expressed proteins only identified in the sensory nerves were mainly relevant to various biological processes that included cell-cell adhesion, carbohydrate metabolic processes and cell adhesion, whereas differentially expressed proteins only identified in the motor nerves were mainly relevant to biological processes associated with the glycolytic process, cell redox homeostasis, and protein folding. In the aspect of the cellular component, the differentially expressed proteins in the sensory and motor nerves were commonly related to extracellular exosomes, the myelin sheath, and focal adhesion. According to the Kyoto Encyclopedia of Genes and Genomes, the differentially expressed proteins identified are primarily related to various types of metabolic pathways. In conclusion, the present study screened differentially expressed proteins to reveal more about the di?erences and similarities between sensory and motor nerves during Wallerian degeneration. The present findings could provide a reference point for a future investigation into the differences between sensory and motor nerves in Wallerian degeneration and the characteristics of peripheral nerve regeneration. The study was approved by the Ethics Committee of the Chinese PLA General Hospital, China (approval No. 2016-x9-07) in September 2016.
Journal Article