Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
149
result(s) for
"GEOBIA"
Sort by:
Comparing Deep Neural Networks, Ensemble Classifiers, and Support Vector Machine Algorithms for Object-Based Urban Land Use/Land Cover Classification
by
Brian Alan Johnson
,
Dongmei Chen
,
Shahab Eddin Jozdani
in
Algorithms
,
Artificial intelligence
,
Artificial neural networks
2019
With the advent of high-spatial resolution (HSR) satellite imagery, urban land use/land cover (LULC) mapping has become one of the most popular applications in remote sensing. Due to the importance of context information (e.g., size/shape/texture) for classifying urban LULC features, Geographic Object-Based Image Analysis (GEOBIA) techniques are commonly employed for mapping urban areas. Regardless of adopting a pixel- or object-based framework, the selection of a suitable classifier is of critical importance for urban mapping. The popularity of deep learning (DL) (or deep neural networks (DNNs)) for image classification has recently skyrocketed, but it is still arguable if, or to what extent, DL methods can outperform other state-of-the art ensemble and/or Support Vector Machines (SVM) algorithms in the context of urban LULC classification using GEOBIA. In this study, we carried out an experimental comparison among different architectures of DNNs (i.e., regular deep multilayer perceptron (MLP), regular autoencoder (RAE), sparse, autoencoder (SAE), variational autoencoder (AE), convolutional neural networks (CNN)), common ensemble algorithms (Random Forests (RF), Bagging Trees (BT), Gradient Boosting Trees (GB), and Extreme Gradient Boosting (XGB)), and SVM to investigate their potential for urban mapping using a GEOBIA approach. We tested the classifiers on two RS images (with spatial resolutions of 30 cm and 50 cm). Based on our experiments, we drew three main conclusions: First, we found that the MLP model was the most accurate classifier. Second, unsupervised pretraining with the use of autoencoders led to no improvement in the classification result. In addition, the small difference in the classification accuracies of MLP from those of other models like SVM, GB, and XGB classifiers demonstrated that other state-of-the-art machine learning classifiers are still versatile enough to handle mapping of complex landscapes. Finally, the experiments showed that the integration of CNN and GEOBIA could not lead to more accurate results than the other classifiers applied.
Journal Article
Effects of Training Set Size on Supervised Machine-Learning Land-Cover Classification of Large-Area High-Resolution Remotely Sensed Data
by
Warner, Timothy A.
,
Price, Bradley S.
,
Ramezan, Christopher A.
in
data collection
,
GEOBIA
,
geometry
2021
The size of the training data set is a major determinant of classification accuracy. Nevertheless, the collection of a large training data set for supervised classifiers can be a challenge, especially for studies covering a large area, which may be typical of many real-world applied projects. This work investigates how variations in training set size, ranging from a large sample size (n = 10,000) to a very small sample size (n = 40), affect the performance of six supervised machine-learning algorithms applied to classify large-area high-spatial-resolution (HR) (1–5 m) remotely sensed data within the context of a geographic object-based image analysis (GEOBIA) approach. GEOBIA, in which adjacent similar pixels are grouped into image-objects that form the unit of the classification, offers the potential benefit of allowing multiple additional variables, such as measures of object geometry and texture, thus increasing the dimensionality of the classification input data. The six supervised machine-learning algorithms are support vector machines (SVM), random forests (RF), k-nearest neighbors (k-NN), single-layer perceptron neural networks (NEU), learning vector quantization (LVQ), and gradient-boosted trees (GBM). RF, the algorithm with the highest overall accuracy, was notable for its negligible decrease in overall accuracy, 1.0%, when training sample size decreased from 10,000 to 315 samples. GBM provided similar overall accuracy to RF; however, the algorithm was very expensive in terms of training time and computational resources, especially with large training sets. In contrast to RF and GBM, NEU, and SVM were particularly sensitive to decreasing sample size, with NEU classifications generally producing overall accuracies that were on average slightly higher than SVM classifications for larger sample sizes, but lower than SVM for the smallest sample sizes. NEU however required a longer processing time. The k-NN classifier saw less of a drop in overall accuracy than NEU and SVM as training set size decreased; however, the overall accuracies of k-NN were typically less than RF, NEU, and SVM classifiers. LVQ generally had the lowest overall accuracy of all six methods, but was relatively insensitive to sample size, down to the smallest sample sizes. Overall, due to its relatively high accuracy with small training sample sets, and minimal variations in overall accuracy between very large and small sample sets, as well as relatively short processing time, RF was a good classifier for large-area land-cover classifications of HR remotely sensed data, especially when training data are scarce. However, as performance of different supervised classifiers varies in response to training set size, investigating multiple classification algorithms is recommended to achieve optimal accuracy for a project.
Journal Article
Monitoring Onion Crop “Cipolla Rossa di Tropea Calabria IGP” Growth and Yield Response to Varying Nitrogen Fertilizer Application Rates Using UAV Imagery
by
Di Fazio, Salvatore
,
Modica, Giuseppe
,
Messina, Gaetano
in
Aerial photography
,
Agricultural production
,
Agriculture
2021
Remote sensing (RS) platforms such as unmanned aerial vehicles (UAVs) represent an essential source of information in precision agriculture (PA) as they are able to provide images on a daily basis and at a very high resolution. In this framework, this study aims to identify the optimal level of nitrogen (N)-based nutrients for improved productivity in an onion field of “Cipolla Rossa di Tropea” (Tropea red onion). Following an experiment that involved the arrangement of nine plots in the onion field in a randomized complete block design (RCBD), with three replications, three different levels of N fertilization were compared: N150 (150 kg N ha−1), N180 (180 kg N ha−1), and e N210 (210 kg N ha−1). The crop cycle was monitored using multispectral (MS) UAV imagery, producing vigor maps and taking into account the yield of data. The soil-adjusted vegetation index (SAVI) was used to monitor the vigor of the crop. In addition, the coverage’s class onion was spatially identified using geographical object-based image classification (GEOBIA), observing differences in SAVI values obtained in plots subjected to differentiated N fertilizer treatment. The information retrieved from the analysis of soil properties (electrical conductivity, ammonium and nitrate nitrogen), yield performance and mean SAVI index data from each field plot showed significant relationships between the different indicators investigated. A higher onion yield was evident in plot N180, in which SAVI values were higher based on the production data.
Journal Article
A Semi-Automated Object-Based Gully Networks Detection Using Different Machine Learning Models: A Case Study of Bowen Catchment, Queensland, Australia
by
Avand, Mohammadtaghi
,
Chittleborough, David
,
Tavakkoli Piralilou, Sepideh
in
Aquatic ecosystems
,
Automation
,
bowen catchment
2019
Gully erosion is a dominant source of sediment and particulates to the Great Barrier Reef (GBR) World Heritage area. We selected the Bowen catchment, a tributary of the Burdekin Basin, as our area of study; the region is associated with a high density of gully networks. We aimed to use a semi-automated object-based gully networks detection process using a combination of multi-source and multi-scale remote sensing and ground-based data. An advanced approach was employed by integrating geographic object-based image analysis (GEOBIA) with current machine learning (ML) models. These included artificial neural networks (ANN), support vector machines (SVM), and random forests (RF), and an ensemble ML model of stacking to deal with the spatial scaling problem in gully networks detection. Spectral indices such as the normalized difference vegetation index (NDVI) and topographic conditioning factors, such as elevation, slope, aspect, topographic wetness index (TWI), slope length (SL), and curvature, were generated from Sentinel 2A images and the ALOS 12-m digital elevation model (DEM), respectively. For image segmentation, the ESP2 tool was used to obtain three optimal scale factors. On using object pureness index (OPI), object matching index (OMI), and object fitness index (OFI), the accuracy of each scale in image segmentation was evaluated. The scale parameter of 45 with OFI of 0.94, which is a combination of OPI and OMI indices, proved to be the optimal scale parameter for image segmentation. Furthermore, segmented objects based on scale 45 were overlaid with 70% and 30% of a prepared gully inventory map to select the ML models’ training and testing objects, respectively. The quantitative accuracy assessment methods of Precision, Recall, and an F1 measure were used to evaluate the model’s performance. Integration of GEOBIA with the stacking model using a scale of 45 resulted in the highest accuracy in detection of gully networks with an F1 measure value of 0.89. Here, we conclude that the adoption of optimal scale object definition in the GEOBIA and application of the ensemble stacking of ML models resulted in higher accuracy in the detection of gully networks.
Journal Article
Geographic Object-Based Image Analysis: A Primer and Future Directions
by
Ghaffarian, Salar
,
Kucharczyk, Maja
,
Hugenholtz, Chris H.
in
Accuracy
,
Artificial neural networks
,
Classification
2020
Geographic object-based image analysis (GEOBIA) is a remote sensing image analysis paradigm that defines and examines image-objects: groups of neighboring pixels that represent real-world geographic objects. Recent reviews have examined methodological considerations and highlighted how GEOBIA improves upon the 30+ year pixel-based approach, particularly for H-resolution imagery. However, the literature also exposes an opportunity to improve guidance on the application of GEOBIA for novice practitioners. In this paper, we describe the theoretical foundations of GEOBIA and provide a comprehensive overview of the methodological workflow, including: (i) software-specific approaches (open-source and commercial); (ii) best practices informed by research; and (iii) the current status of methodological research. Building on this foundation, we then review recent research on the convergence of GEOBIA with deep convolutional neural networks, which we suggest is a new form of GEOBIA. Specifically, we discuss general integrative approaches and offer recommendations for future research. Overall, this paper describes the past, present, and anticipated future of GEOBIA in a novice-accessible format, while providing innovation and depth to experienced practitioners.
Journal Article
Comparison and assessment of different object-based classifications using machine learning algorithms and UAVs multispectral imagery: a case study in a citrus orchard and an onion crop
by
Modica, Giuseppe
,
Messina, Gaetano
,
De Luca, Giandomenico
in
eCognition
,
Geographic Object-Based Image Analysis (GEOBIA)
,
Orfeo Toolbox (OTB)
2021
This study aimed to compare and assess different Geographic Object-Based Image Analysis (GEOBIA) and machine learning algorithms using unmanned aerial vehicles (UAVs) multispectral imagery. Two study sites were provided, a bergamot and an onion crop located in Calabria (Italy). The Large-Scale Mean-Shift (LSMS), integrated into the Orfeo ToolBox (OTB) suite, the Shepherd algorithm implemented in the Python Remote Sensing and Geographical Information Systems software Library (RSGISLib), and the Multi-Resolution Segmentation (MRS) algorithm implemented in eCognition, were tested. Four classification algorithms were assessed: K-Nearest Neighbour (KNN), Support Vector Machines (SVM), Random Forests (RF), and Normal Bayes (NB). The obtained segmentations were compared using geometric and non-geometric indices, while the classification results were compared in terms of overall, user's and producer's accuracy, and multi-class F-scoreM. The statistical significance of the classification accuracy outputs was assessed using McNemar's test. The SVM and RF resulted as the most stable classifiers and less influenced by the software used and the scene's characteristics, with OA values never lower than 81.0% and 91.20%. The NB algorithm obtained the highest OA in the Orchard-study site, using OTB and eCognition. NB performed in Scikit-learn results in the lower (73.80%). RF and SVM obtained an OA>90% in the Crop-study site.
Journal Article
Coastline Zones Identification and 3D Coastal Mapping Using UAV Spatial Data
by
Pavlogeorgatos, Gerasimos
,
Topouzelis, Konstantinos
,
Papakonstantinou, Apostolos
in
3D geovisualization
,
Algae
,
Algorithms
2016
Spatial data acquisition is a critical process for the identification of the coastline and coastal zones for scientists involved in the study of coastal morphology. The availability of very high-resolution digital surface models (DSMs) and orthophoto maps is of increasing interest to all scientists, especially those monitoring small variations in the earth’s surface, such as coastline morphology. In this article, we present a methodology to acquire and process high resolution data for coastal zones acquired by a vertical take off and landing (VTOL) unmanned aerial vehicle (UAV) attached to a small commercial camera. The proposed methodology integrated computer vision algorithms for 3D representation with image processing techniques for analysis. The computer vision algorithms used the structure from motion (SfM) approach while the image processing techniques used the geographic object-based image analysis (GEOBIA) with fuzzy classification. The SfM pipeline was used to construct the DSMs and orthophotos with a measurement precision in the order of centimeters. Consequently, GEOBIA was used to create objects by grouping pixels that had the same spectral characteristics together and extracting statistical features from them. The objects produced were classified by fuzzy classification using the statistical features as input. The classification output classes included beach composition (sand, rubble, and rocks) and sub-surface classes (seagrass, sand, algae, and rocks). The methodology was applied to two case studies of coastal areas with different compositions: a sandy beach with a large face and a rubble beach with a small face. Both are threatened by beach erosion and have been degraded by the action of sea storms. Results show that the coastline, which is the low limit of the swash zone, was detected successfully by both the 3D representations and the image classifications. Furthermore, several traces representing previous sea states were successfully recognized in the case of the sandy beach, while the erosion and beach crests were detected in the case of the rubble beach. The achieved level of detail of the 3D representations revealed new beach characteristics, including erosion crests, berm zones, and sand dunes. In conclusion, the UAV SfM workflow provides information in a spatial resolution that permits the study of coastal changes with confidence and provides accurate 3D visualizations of the beach zones, even for areas with complex topography. The overall results show that the presented methodology is a robust tool for the classification, 3D visualization, and mapping of coastal morphology.
Journal Article
A Comparison of UAV and Satellites Multispectral Imagery in Monitoring Onion Crop. An Application in the ‘Cipolla Rossa di Tropea’ (Italy)
by
Modica, Giuseppe
,
Peña, Jose M.
,
Messina, Gaetano
in
administrative management
,
Agricultural land
,
Agriculture
2020
Precision agriculture (PA) is a management strategy that analyzes the spatial and temporal variability of agricultural fields using information and communication technologies with the aim to optimize profitability, sustainability, and protection of agro-ecological services. In the context of PA, this research evaluated the reliability of multispectral (MS) imagery collected at different spatial resolutions by an unmanned aerial vehicle (UAV) and PlanetScope and Sentinel-2 satellite platforms in monitoring onion crops over three different dates. The soil adjusted vegetation index (SAVI) was used for monitoring the vigor of the study field. Next, the vigor maps from the two satellite platforms with those derived from UAV were compared by statistical analysis in order to evaluate the contribution made by each platform for monitoring onion crops. Besides, the two coverage’s classes of the field, bare soil and onions, were spatially identified using geographical object-based image classification (GEOBIA), and their spectral contribution was analyzed comparing the SAVI calculated considering only crop pixels (i.e., SAVI onions) and that calculated considering only bare soil pixels (i.e., SAVI soil) with the SAVI from the three platforms. The results showed that satellite imagery, coherent and correlated with UAV images, could be useful to assess the general conditions of the field while UAV permits to discriminate localized circumscribed areas that the lowest resolution of satellites missed, where there are conditions of inhomogeneity in the field, determined by abiotic or biotic stresses.
Journal Article
Mapping Urban Tree Cover Changes Using Object-Based Convolution Neural Network (OB-CNN)
by
Timilsina, Shirisa
,
Aryal, Jagannath
,
Kirkpatrick, Jamie B.
in
accuracy
,
administrative management
,
artificial intelligence
2020
Urban trees provide social, economic, environmental and ecosystem services benefits that improve the liveability of cities and contribute to individual and community wellbeing. There is thus a need for effective mapping, monitoring and maintenance of urban trees. Remote sensing technologies can effectively map and monitor urban tree coverage and changes over time as an efficient and low-cost alternative to field-based measurements, which are time consuming and costly. Automatic extraction of urban land cover features with high accuracy is a challenging task, and it demands object based artificial intelligence workflows for efficiency and thematic accuracy. The aim of this research is to effectively map urban tree cover changes and model the relationship of such changes with socioeconomic variables. The object-based convolutional neural network (CNN) method is illustrated by mapping urban tree cover changes between 2005 and 2015/16 using satellite, Google Earth imageries and Light Detection and Ranging (LiDAR) datasets. The training sample for CNN model was generated by Object Based Image Analysis (OBIA) using thresholds in a Canopy Height Model (CHM) and the Normalised Difference Vegetation Index (NDVI). The tree heatmap produced from the CNN model was further refined using OBIA. Tree cover loss, gain and persistence was extracted, and multiple regression analysis was applied to model the relationship with socioeconomic variables. The overall accuracy and kappa coefficient of tree cover extraction was 96% and 0.77 for 2005 images and 98% and 0.93 for 2015/16 images, indicating that the object-based CNN technique can be effectively implemented for urban tree coverage mapping and monitoring. There was a decline in tree coverage in all suburbs. Mean parcel size and median household income were significantly related to tree cover loss (R2 = 58.5%). Tree cover gain and persistence had positive relationship with tertiary education, parcel size and ownership change (gain: R2 = 67.8% and persistence: R2 = 75.3%). The research findings demonstrated that remote sensing data with intelligent processing can contribute to the development of policy input for management of tree coverage in cities.
Journal Article
Large-Area, High Spatial Resolution Land Cover Mapping Using Random Forests, GEOBIA, and NAIP Orthophotography: Findings and Recommendations
by
Warner, Timothy A.
,
Pauley, Cameron E.
,
Strager, Michael P.
in
Accuracy
,
Algorithms
,
Artificial intelligence
2019
Despite the need for quality land cover information, large-area, high spatial resolution land cover mapping has proven to be a difficult task for a variety of reasons including large data volumes, complexity of developing training and validation datasets, data availability, and heterogeneity in data and landscape conditions. We investigate the use of geographic object-based image analysis (GEOBIA), random forest (RF) machine learning, and National Agriculture Imagery Program (NAIP) orthophotography for mapping general land cover across the entire state of West Virginia, USA, an area of roughly 62,000 km2. We obtained an overall accuracy of 96.7% and a Kappa statistic of 0.886 using a combination of NAIP orthophotography and ancillary data. Despite the high overall classification accuracy, some classes were difficult to differentiate, as highlight by the low user’s and producer’s accuracies for the barren, impervious, and mixed developed classes. In contrast, forest, low vegetation, and water were generally mapped with accuracy. The inclusion of ancillary data and first- and second-order textural measures generally improved classification accuracy whereas band indices and object geometric measures were less valuable. Including super-object attributes improved the classification slightly; however, this increased the computational time and complexity. From the findings of this research and previous studies, recommendations are provided for mapping large spatial extents.
Journal Article