Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"GFP-binding nanobody"
Sort by:
In vivo proteomic mapping through GFP-directed proximity-dependent biotin labelling in zebrafish
2021
Protein interaction networks are crucial for complex cellular processes. However, the elucidation of protein interactions occurring within highly specialised cells and tissues is challenging. Here, we describe the development, and application, of a new method for proximity-dependent biotin labelling in whole zebrafish. Using a conditionally stabilised GFP-binding nanobody to target a biotin ligase to GFP-labelled proteins of interest, we show tissue-specific proteomic profiling using existing GFP-tagged transgenic zebrafish lines. We demonstrate the applicability of this approach, termed BLITZ (Biotin Labelling In Tagged Zebrafish), in diverse cell types such as neurons and vascular endothelial cells. We applied this methodology to identify interactors of caveolar coat protein, cavins, in skeletal muscle. Using this system, we defined specific interaction networks within in vivo muscle cells for the closely related but functionally distinct Cavin4 and Cavin1 proteins.
Journal Article
Nanobody-based products as research and diagnostic tools
by
De Meyer, Thomas
,
Muyldermans, Serge
,
Depicker, Ann
in
antibodies
,
antibody fragment
,
Biological and medical sciences
2014
•New production platforms for VHH and VHH-Fc antibodies were recently explored.•VHHs have distinct properties and often outperform conventional antibodies.•Several VHHs for protein purification and localisation are commercially available.
Since the serendipitous discovery 20 years ago of bona fide camelid heavy-chain antibodies, their single-domain antigen-binding fragments, known as VHHs or nanobodies, have received a progressively growing interest. As a result of the beneficial properties of these stable recombinant entities, they are currently highly valued proteins for multiple applications, including fundamental research, diagnostics, and therapeutics. Today, with the original patents expiring, even more academic and industrial groups are expected to explore innovative VHH applications. Here, we provide a thorough overview of novel implementations of VHHs as research and diagnostic tools, and of the recently evaluated production platforms for several VHHs and VHH-derived antibody formats.
Journal Article
Unintended inhibition of protein function using GFP nanobodies in human cells
by
Royle, Stephen J
,
Kuey, Cansu
,
Clarke, Nicholas I
in
Cell Biology
,
Cell lines
,
Developmental biology
2019
Tagging a protein-of-interest with GFP using genome editing is a popular approach to study protein function in cell and developmental biology. To avoid re-engineering cell lines or organisms in order to introduce additional tags, functionalized nanobodies that bind GFP can be used to extend the functionality of the GFP tag. We developed functionalized nanobodies, which we termed \"dongles\", that could add, for example, an FKBP tag to a GFP-tagged protein-of-interest; enabling knocksideways experiments in GFP knock-in cell lines. The power of knocksideways is that it allows investigators to rapidly switch the protein from an active to an inactive state. We show that dongles allow for effective knocksideways of GFP-tagged proteins in genome-edited human cells. However, we discovered that nanobody binding to dynamin-2-GFP caused inhibition of dynamin function prior to knocksideways. While this limitation might be specific to the protein studied, it was significant enough to convince us not to pursue development of dongle technology further. Footnotes * - Images in figures where transferrin uptake was quantified are now shown using the same minimum and maximum values per channel, for all images in the figure. - A missing box was added to Figure 1