Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
20,392 result(s) for "GLOBAL LEVEL"
Sort by:
Incorporating Global Information for Aspect Category Sentiment Analysis
Aspect category sentiment analysis aims to automatically identify the sentiment polarities of aspect categories mentioned in text, and is widely used in the data analysis of product reviews and social media. Most existing studies typically limit themselves to utilizing sentence-level local information, thereby failing to fully exploit the potential of document-level and corpus-level global information. To address these limitations, we propose a model that integrates global information for aspect category sentiment analysis, aiming to leverage sentence-level, document-level, and corpus-level information simultaneously. Specifically, based on sentences and their corresponding aspect categories, a graph neural network is initially built to capture document-level information, including sentiment consistency within the same category and sentiment similarity between different categories in a review. We subsequently employ a memory network to retain corpus-level information, where the representations of training instances serve as keys and their associated labels as values. Additionally, a k-nearest neighbor retrieval mechanism is used to find training instances relevant to a given input. Experimental results on four commonly used datasets from SemEval 2015 and 2016 demonstrate the effectiveness of our model. The in-depth experimental analysis reveals that incorporating document-level information substantially improves the accuracies of the two primary ‘positive’ and ‘negative’ categories, while the inclusion of corpus-level information is especially advantageous for identifying the less frequently occurring ‘neutral’ category.
Global Mean Sea Level Rise Inferred From Ocean Salinity and Temperature Changes
Barystatic sea level rise (SLR) caused by the addition of freshwater to the ocean from melting ice can in principle be recorded by a reduction in seawater salinity, but detection of this signal has been hindered by sparse data coverage and the small trends compared to natural variability. Here, we develop an autoregressive machine learning method to estimate salinity changes in the global ocean from 2001 to 2019 that reduces uncertainties in ocean freshening trends by a factor of four compared to previous estimates. We find that the ocean mass rose by 13,000 ± 3,000 Gt from 2001 to 2019, implying a barystatic SLR of 2.0 ± 0.5 mm/yr. Combined with SLR of 1.3 ± 0.1 mm/yr due to ocean thermal expansion, these results suggest that global mean sea level rose by 3.4 ± 0.6 mm/yr from 2001 to 2019. These results provide an important validation of remote‐sensing measurements of ocean mass changes, global SLR, and global ice budgets. Plain Language Summary Global sea level rise (SLR) is caused by heating of the ocean, and by the input of freshwater from the melting of glaciers and ice caps. Global freshwater input to the oceans from melting ice during the 21st century has primarily been tracked by satellites that measure changes in the mass of the ocean. Here, we show that trends in global SLR can also be accurately tracked by global observations of ocean salinity changes, as freshwater runoff from melting ice enters the ocean and dilutes ocean salinity. These results show that ocean salinity measurements are critical for monitoring global sea level changes, particularly as polar warming intensifies and the melting of ice sheets accelerates. Key Points A new full‐depth ocean salinity product yields robust global freshening trend of (35 ± 10) × 10−6 yr−1 from 2001 to 2019 Combined with estimates of sea ice loss, this freshening implies that ocean mass rose by 13,000 ± 3,000 Gt from 2001 to 2019 Sea level rise derived from ocean temperature and salinity measurements is 3.4 ± 0.6 mm/yr, confirming the satellite altimetry trend
Triskeles and Symmetries of Mean Global Sea-Level Pressure
The evolution of mean sea-level atmospheric pressure since 1850 is analyzed using iterative singular spectrum analysis. Maps of the main components (the trends) reveal striking symmetries of order 3 and 4. The Northern Hemisphere (NH) displays a set of three positive features, forming an almost perfect equilateral triangle. The Southern Hemisphere (SH) displays a set of three positive features arranged as an isosceles triangle, with a possible fourth (weaker) feature. This geometry can be modeled as the Taylor–Couette flow of mode 3 (NH) or 4 (SH). The remarkable regularity and three-order symmetry of the NH triskeles occurs despite the lack of cylindrical symmetry of the northern continents. The stronger intensity and larger size of features in the SH is linked to the presence of the annular Antarctic Oscillation (AAO), which monitors the periodic reinforcement and weakening of the circumpolar vortex; it is a stationary mode. These components represent 70% of the variance in total pressure since 1850 and are stable in both time and space. In the remaining 30% of the variance, we have extracted quasi-periodical components with periods larger than 1 year (2% of the variance) and a harmonic sequence of the 1-year period (20% of the variance).
The causes of sea-level rise since 1900
The rate of global-mean sea-level rise since 1900 has varied over time, but the contributing factors are still poorly understood 1 . Previous assessments found that the summed contributions of ice-mass loss, terrestrial water storage and thermal expansion of the ocean could not be reconciled with observed changes in global-mean sea level, implying that changes in sea level or some contributions to those changes were poorly constrained 2 , 3 . Recent improvements to observational data, our understanding of the main contributing processes to sea-level change and methods for estimating the individual contributions, mean another attempt at reconciliation is warranted. Here we present a probabilistic framework to reconstruct sea level since 1900 using independent observations and their inherent uncertainties. The sum of the contributions to sea-level change from thermal expansion of the ocean, ice-mass loss and changes in terrestrial water storage is consistent with the trends and multidecadal variability in observed sea level on both global and basin scales, which we reconstruct from tide-gauge records. Ice-mass loss—predominantly from glaciers—has caused twice as much sea-level rise since 1900 as has thermal expansion. Mass loss from glaciers and the Greenland Ice Sheet explains the high rates of global sea-level rise during the 1940s, while a sharp increase in water impoundment by artificial reservoirs is the main cause of the lower-than-average rates during the 1970s. The acceleration in sea-level rise since the 1970s is caused by the combination of thermal expansion of the ocean and increased ice-mass loss from Greenland. Our results reconcile the magnitude of observed global-mean sea-level rise since 1900 with estimates based on the underlying processes, implying that no additional processes are required to explain the observed changes in sea level since 1900. Observed global-mean sea-level rise since 1900 is reconciled with estimates based on the contributing processes, revealing budget closure within uncertainties and showing ice-mass loss from glaciers as a dominant contributor.
Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016
Glaciers distinct from the Greenland and Antarctic ice sheets cover an area of approximately 706,000 square kilometres globally(1), with an estimated total volume of 170,000 cubic kilometres, or 0.4 metres of potential sea-level-rise equivalent(2). Retreating and thinning glaciers are icons of climate change(3) and affect regional runoff(4) as well as global sea level(5,6). In past reports from the Intergovernmental Panel on Climate Change, estimates of changes in glacier mass were based on the multiplication of averaged or interpolated results from available observations of a few hundred glaciers by defined regional glacier areas(7-10). For data-scarce regions, these results had to be complemented with estimates based on satellite altimetry and gravimetry(11). These past approaches were challenged by the small number and heterogeneous spatiotemporal distribution of in situ measurement series and their often unknown ability to represent their respective mountain ranges, as well as by the spatial limitations of satellite altimetry (for which only point data are available) and gravimetry (with its coarse resolution). Here we use an extrapolation of glaciological and geodetic observations to show that glaciers contributed 27 +/- 22 millimetres to global mean sea-level rise from 1961 to 2016. Regional specific-mass-change rates for 2006-2016 range from -0.1 metres to -1.2 metres of water equivalent per year, resulting in a global sea-level contribution of 335 +/- 144 gigatonnes, or 0.92 +/- 0.39 millimetres, per year. Although statistical uncertainty ranges overlap, our conclusions suggest that glacier mass loss may be larger than previously reported(11.) The present glacier mass loss is equivalent to the sea-level contribution of the Greenland Ice Sheet(12), clearly exceeds the loss from the Antarctic Ice Sheet(13), and accounts for 25 to 30 per cent of the total observed sea-level rise(14). Present mass-loss rates indicate that glaciers could almost disappear in some mountain ranges in this century, while heavily glacierized regions will continue to contribute to sea-level rise beyond 2100.
Mass balance of the Greenland Ice Sheet from 1992 to 2018
The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades 1 , 2 , and it is expected to continue to be so 3 . Although increases in glacier flow 4 – 6 and surface melting 7 – 9 have been driven by oceanic 10 – 12 and atmospheric 13 , 14 warming, the magnitude and trajectory of the ice sheet’s mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 ± 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 ± 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 ± 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 ± 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 ± 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions 15 and ocean temperatures fell at the terminus of Jakobshavn Isbræ 16 . Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario 17 , which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate. Three techniques for estimating mass losses from the Greenland Ice Sheet produce comparable results for the period 1992–2018 that approach the trajectory of the highest rates of sea-level rise projected by the IPCC.
Investigating the potential impact of 1.5, 2 and 3 °C global warming levels on crop suitability and planting season over West Africa
West African rainfed agriculture is highly vulnerable to climate variability and change. Global warming is projected to result in higher regional warming and have a strong impact on agriculture. This study specifically examines the impact of global warming levels (GWLs) of 1.5°, 2° and 3 °C relative to 1971–2000 on crop suitability over West Africa. We used 10 Coupled Model Intercomparison Project Phase5 Global Climate Models (CMIP5 GCMs) downscaled by Coordinated Regional Downscaling Experiment (CORDEX) Rossby Centre’s regional Atmospheric model version 4, RCA4, to drive Ecocrop, a crop suitability model, for pearl millet, cassava, groundnut, cowpea, maize and plantain. The results show Ecocrop simulated crop suitability spatial representation with higher suitability, observed to the south of latitude 14°N and lower suitability to its north for 1971–2000 for all crops except for plantain (12°N). The model also simulates the best three planting months within the growing season from September-August over the past climate. Projected changes in crop suitability under the three GWLs 1.5–3.0 °C suggest a spatial suitability expansion for legume and cereal crops, notably in the central southern Sahel zone; root and tuber and plantain in the central Guinea-Savanna zone. In contrast, projected decreases in the crop suitability index value are predicted to the south of 14°N for cereals, root and tuber crops; nevertheless, the areas remain suitable for the crops. A delay of between 1-3 months is projected over the region during the planting month under the three GWLs for legumes, pearl millet and plantain. A two month delay in planting is projected in the south, notably over the Guinea and central Savanna zone with earlier planting of about three months in the Savanna-Sahel zones. The effect of GWL2.0 and GWL3.0 warming in comparison to GWL1.5 °C are more dramatic on cereals and root and tuber crops, especially cassava. All the projected changes in simulated crop suitability in response to climatic variables are statistically significant at 99% confidence level. There is also an increasing trend in the projected crop suitability change across the three warming except for cowpea. This study has implications for improving the resilience of crop production to climate changes, and more broadly, to food security in West Africa.
The hysteresis of the Antarctic Ice Sheet
More than half of Earth’s freshwater resources are held by the Antarctic Ice Sheet, which thus represents by far the largest potential source for global sea-level rise under future warming conditions 1 . Its long-term stability determines the fate of our coastal cities and cultural heritage. Feedbacks between ice, atmosphere, ocean, and the solid Earth give rise to potential nonlinearities in its response to temperature changes. So far, we are lacking a comprehensive stability analysis of the Antarctic Ice Sheet for different amounts of global warming. Here we show that the Antarctic Ice Sheet exhibits a multitude of temperature thresholds beyond which ice loss is irreversible. Consistent with palaeodata 2 we find, using the Parallel Ice Sheet Model 3 – 5 , that at global warming levels around 2 degrees Celsius above pre-industrial levels, West Antarctica is committed to long-term partial collapse owing to the marine ice-sheet instability. Between 6 and 9 degrees of warming above pre-industrial levels, the loss of more than 70 per cent of the present-day ice volume is triggered, mainly caused by the surface elevation feedback. At more than 10 degrees of warming above pre-industrial levels, Antarctica is committed to become virtually ice-free. The ice sheet’s temperature sensitivity is 1.3 metres of sea-level equivalent per degree of warming up to 2 degrees above pre-industrial levels, almost doubling to 2.4 metres per degree of warming between 2 and 6 degrees and increasing to about 10 metres per degree of warming between 6 and 9 degrees. Each of these thresholds gives rise to hysteresis behaviour: that is, the currently observed ice-sheet configuration is not regained even if temperatures are reversed to present-day levels. In particular, the West Antarctic Ice Sheet does not regrow to its modern extent until temperatures are at least one degree Celsius lower than pre-industrial levels. Our results show that if the Paris Agreement is not met, Antarctica’s long-term sea-level contribution will dramatically increase and exceed that of all other sources. Modelling shows that the Antarctic Ice Sheet exhibits multiple temperature thresholds beyond which ice loss would become irreversible, and once melted, the ice sheet can regain its previous mass only if the climate cools well below pre-industrial temperatures.
Persistent acceleration in global sea-level rise since the 1960s
Previous studies reconstructed twentieth-century global mean sea level (GMSL) from sparse tide-gauge records to understand whether the recent high rates obtained from satellite altimetry are part of a longer-term acceleration. However, these analyses used techniques that can only accurately capture either the trend or the variability in GMSL, but not both. Here we present an improved hybrid sea-level reconstruction during 1900–2015 that combines previous techniques at time scales where they perform best. We find a persistent acceleration in GMSL since the 1960s and demonstrate that this is largely (~76%) associated with sea-level changes in the Indo-Pacific and South Atlantic. We show that the initiation of the acceleration in the 1960s is tightly linked to an intensification and a basin-scale equatorward shift of Southern Hemispheric westerlies, leading to increased ocean heat uptake, and hence greater rates of GMSL rise, through changes in the circulation of the Southern Ocean.
A global analysis of subsidence, relative sea-level change and coastal flood exposure
Climate-induced sea-level rise and vertical land movements, including natural and human-induced subsidence in sedimentary coastal lowlands, combine to change relative sea levels around the world’s coasts. Although this affects local rates of sea-level rise, assessments of the coastal impacts of subsidence are lacking on a global scale. Here, we quantify global-mean relative sea-level rise to be 2.6 mm yr−1 over the past two decades. However, as coastal inhabitants are preferentially located in subsiding locations, they experience an average relative sea-level rise up to four times faster at 7.8 to 9.9 mm yr−1. These results indicate that the impacts and adaptation needs are much higher than reported global sea-level rise measurements suggest. In particular, human-induced subsidence in and surrounding coastal cities can be rapidly reduced with appropriate policy for groundwater utilization and drainage. Such policy would offer substantial and rapid benefits to reduce growth of coastal flood exposure due to relative sea-level rise.Land subsidence and uplift influence the rate of sea-level rise. Most coastal populations live in subsiding areas and experience average rates of relative sea-level rise three to four times faster than due to climate change alone, indicating the need for policy to address subsidence.