Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,651
result(s) for
"GLUCONEOGENESIS"
Sort by:
Cellular and Molecular Mechanisms of Metformin Action
2021
Abstract
Metformin is a first-line therapy for the treatment of type 2 diabetes, due to its robust glucose-lowering effects, well-established safety profile, and relatively low cost. While metformin has been shown to have pleotropic effects on glucose metabolism, there is a general consensus that the major glucose-lowering effect in patients with type 2 diabetes is mostly mediated through inhibition of hepatic gluconeogenesis. However, despite decades of research, the mechanism by which metformin inhibits this process is still highly debated. A key reason for these discrepant effects is likely due to the inconsistency in dosage of metformin across studies. Widely studied mechanisms of action, such as complex I inhibition leading to AMPK activation, have only been observed in the context of supra-pharmacological (>1 mM) metformin concentrations, which do not occur in the clinical setting. Thus, these mechanisms have been challenged in recent years and new mechanisms have been proposed. Based on the observation that metformin alters cellular redox balance, a redox-dependent mechanism of action has been described by several groups. Recent studies have shown that clinically relevant (50-100 μM) concentrations of metformin inhibit hepatic gluconeogenesis in a substrate-selective manner both in vitro and in vivo, supporting a redox-dependent mechanism of metformin action. Here, we review the current literature regarding metformin’s cellular and molecular mechanisms of action.
Graphical Abstract
Graphical Abstract
Journal Article
A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8+ T cells
by
Tang, Ke
,
Dong, Wenqian
,
Ma, Jingwei
in
3-Mercaptopropionic Acid - pharmacology
,
631/67/2327
,
631/67/327
2018
CD8
+
memory T (Tm) cells are fundamental for protective immunity against infections and cancers
1
–
5
. Metabolic activities are crucial in controlling memory T-cell homeostasis, but mechanisms linking metabolic signals to memory formation and survival remain elusive. Here we show that CD8
+
Tm cells markedly upregulate cytosolic phosphoenolpyruvate carboxykinase (Pck1), the hub molecule regulating glycolysis, tricarboxylic acid cycle and gluconeogenesis, to increase glycogenesis via gluconeogenesis. The resultant glycogen is then channelled to glycogenolysis to generate glucose-6-phosphate and the subsequent pentose phosphate pathway (PPP) that generates abundant NADPH, ensuring high levels of reduced glutathione in Tm cells. Abrogation of Pck1–glycogen–PPP decreases GSH/GSSG ratios and increases levels of reactive oxygen species (ROS), leading to impairment of CD8
+
Tm formation and maintenance. Importantly, this metabolic regulatory mechanism could be readily translated into more efficient T-cell immunotherapy in mouse tumour models.
Glycogen metabolism controls memory T cells. Ma et al. show that the metabolic gene
PCK1
promotes glycogen formation, which is used in the pentose phosphate pathway, generating glutathione that is important for counteraction of ROS and thus promotion of memory T-cell maintenance, and resulting in improved antitumour immunity.
Journal Article
Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
by
Mithieux, Gilles
,
Andreelli, Fabrizio
,
Foretz, Marc
in
AMP-Activated Protein Kinases
,
AMPK
,
Animals
2010
Metformin is widely used to treat hyperglycemia in individuals with type 2 diabetes. Recently the LKB1/AMP-activated protein kinase (LKB1/AMPK) pathway was proposed to mediate the action of metformin on hepatic gluconeogenesis. However, the molecular mechanism by which this pathway operates had remained elusive. Surprisingly, here we have found that in mice lacking AMPK in the liver, blood glucose levels were comparable to those in wild-type mice, and the hypoglycemic effect of metformin was maintained. Hepatocytes lacking AMPK displayed normal glucose production and gluconeogenic gene expression compared with wild-type hepatocytes. In contrast, gluconeogenesis was upregulated in LKB1-deficient hepatocytes. Metformin decreased expression of the gene encoding the catalytic subunit of glucose-6-phosphatase (G6Pase), while cytosolic phosphoenolpyruvate carboxykinase (Pepck) gene expression was unaffected in wild-type, AMPK-deficient, and LKB1-deficient hepatocytes. Surprisingly, metformin-induced inhibition of glucose production was amplified in both AMPK- and LKB1-deficient compared with wild-type hepatocytes. This inhibition correlated in a dose-dependent manner with a reduction in intracellular ATP content, which is crucial for glucose production. Moreover, metformin-induced inhibition of glucose production was preserved under forced expression of gluconeogenic genes through PPARgamma coactivator 1alpha (PGC-1alpha) overexpression, indicating that metformin suppresses gluconeogenesis via a transcription-independent process. In conclusion, we demonstrate that metformin inhibits hepatic gluconeogenesis in an LKB1- and AMPK-independent manner via a decrease in hepatic energy state.
Journal Article
MicroRNA‐351 eases insulin resistance and liver gluconeogenesis via the PI3K/AKT pathway by inhibiting FLOT2 in mice of gestational diabetes mellitus
by
Liu, Xiao‐Nan
,
Chen, Shu‐Hong
,
Peng, Yan
in
1-Phosphatidylinositol 3-kinase
,
AKT protein
,
Animals
2019
Gestational diabetes mellitus (GDM) is known as different degree glucose intolerance that is initially identified during pregnancy. MicroRNAs (miRs) may be a potential candidate for treatment of GDM. Herein, we suggested that miR‐351 could be an inhibitor in the progression of GDM via the phosphoinositide 3‐kinase/protein kinase B (PI3K/AKT) pathway. Microarray analysis was used to identify differentially expressed genes and predict miRs regulating flotillin 2 (FLOT2). Target relationship between miR‐351 and FLOT2 was verified. Gestational diabetes mellitus mice were treated with a series of mimic, inhibitor and small interfering RNA to explore the effect of miR‐351 on insulin resistance (IR), cell apoptosis in pancreatic tissues and liver gluconeogenesis through evaluating GDM‐related biochemical indexes, as well as expression of miR‐351, FLOT2, PI3K/AKT pathway‐, IR‐ and liver gluconeogenesis‐related genes. MiR‐351 and FLOT2 were reported to be involved in GDM. FLOT2 was the target gene of miR‐351. Gestational diabetes mellitus mice exhibited IR and liver gluconeogenesis, up‐regulated FLOT2, activated PI3K/AKT pathway and down‐regulated miR‐351 in liver tissues. Additionally, miR‐351 overexpression and FLOT2 silencing decreased the levels of FLOT2, phosphoenolpyruvate carboxykinase, glucose‐6‐phosphatase, fasting blood glucose, fasting insulin, total cholesterol, triglyceride, glyeosylated haemoglobin and homeostasis model of assessment for IR index (HOMA‐IR), extent of PI3K and AKT phosphorylation, yet increased the levels of HOMA for islet β‐cell function, HOMA for insulin sensitivity index and glucose transporter 2 expression, indicating reduced cell apoptosis in pancreatic tissues and alleviated IR and liver gluconeogenesis. Our results reveal that up‐regulation of miR‐351 protects against IR and liver gluconeogenesis by repressing the PI3K/AKT pathway through regulating FLOT2 in GDM mice, which identifies miR‐351 as a potential therapeutic target for the clinical management of GDM.
Journal Article
Dexamethasone-induced Krüppel-like factor 9 expression promotes hepatic gluconeogenesis and hyperglycemia
2019
Chronic glucocorticoid therapy has serious side effects, including diabetes and fatty liver. However, the molecular mechanisms responsible for steroid-induced diabetes remain largely enigmatic. Here, we show that hepatic Krüppel-like factor 9 (Klf9) gene expression is induced by dexamethasone and fasting. The overexpression of Klf9 in primary hepatocytes strongly stimulated Pgc1a gene expression through direct binding to its promoter, thereby activating the gluconeogenic program. However, Klf9 mutation abolished the stimulatory effect of dexamethasone on cellular glucose output. Adenovirus-mediated overexpression of KLF9 in the mouse liver markedly increased blood glucose levels and impaired glucose tolerance. Conversely, both global Klf9-mutant mice and liver-specific Klf9-deleted mice displayed fasting hypoglycemia. Moreover, the knockdown of Klf9 in the liver in diabetic mouse models, including ob/ob and db/db mice, markedly lowered fasting blood glucose levels. Notably, hepatic Klf9 deficiency in mice alleviated hyperglycemia induced by chronic dexamethasone treatment. These results suggest a critical role for KLF9 in the regulation of hepatic glucose metabolism and identify hepatic induction of KLF9 as a mechanism underlying glucocorticoid therapy-induced diabetes.
Journal Article
Identification of Small Molecule Activators of Cryptochrome
2012
Impairment of the circadian clock has been associated with numerous disorders, including metabolic disease. Although small molecules that modulate clock function might offer therapeutic approaches to such diseases, only a few compounds have been identified that selectively target core clock proteins. From an unbiased cell-based circadian phenotypic screen, we identified KL001, a small molecule that specifically interacts with cryptochrome (CRY). KL001 prevented ubiquitin-dependent degradation of CRY, resulting in lengthening of the circadian period. In combination with mathematical modeling, our studies using KL001 revealed that CRY1 and CRY2 share a similar functional role in the period regulation. Furthermore, KL001-mediated CRY stabilization inhibited glucagon-induced gluconeogenesis in primary hepatocytes. KL001 thus provides a tool to study the regulation of CRY-dependent physiology and aid development of clock-based therapeutics of diabetes.
Journal Article
Endogenous renal adiponectin drives gluconeogenesis through enhancing pyruvate and fatty acid utilization
2023
Adiponectin is a secretory protein, primarily produced in adipocytes. However, low but detectable expression of adiponectin can be observed in cell types beyond adipocytes, particularly in kidney tubular cells, but its local renal role is unknown. We assessed the impact of renal adiponectin by utilizing male inducible kidney tubular cell-specific adiponectin overexpression or knockout mice. Kidney-specific adiponectin overexpression induces a doubling of phosphoenolpyruvate carboxylase expression and enhanced pyruvate-mediated glucose production, tricarboxylic acid cycle intermediates and an upregulation of fatty acid oxidation (FAO). Inhibition of FAO reduces the adiponectin-induced enhancement of glucose production, highlighting the role of FAO in the induction of renal gluconeogenesis. In contrast, mice lacking adiponectin in the kidney exhibit enhanced glucose tolerance, lower utilization and greater accumulation of lipid species. Hence, renal adiponectin is an inducer of gluconeogenesis by driving enhanced local FAO and further underlines the important systemic contribution of renal gluconeogenesis.
Adiponectin is a widely studied secretory protein produced by adipocytes. Here, the authors show that adiponectin is also expressed in the kidney where it is a major driver of fatty acid oxidation, from which the kidney derives energy for gluconeogenesis.
Journal Article
Regulation of hepatic glucose metabolism in health and disease
by
Vatner, Daniel F.
,
Petersen, Max C.
,
Shulman, Gerald I.
in
631/443/319
,
631/443/319/1642
,
692/163/2743/137
2017
Key Points
Hepatic glucose metabolism encompasses several catabolic and anabolic fluxes that have distinct modes of hepatocyte-autonomous (direct) and hepatocyte- non-autonomous (indirect) regulatory mechanisms
Acute regulation of hepatic glucose metabolism is achieved through changes in protein phosphorylation, substrate availability, allostery and redox state
Chronic regulation of hepatic glucose metabolism occurs through transcriptional mechanisms and the development of insulin resistance
Acute suppression of hepatic gluconeogenesis by insulin is largely an indirect effect that is mediated mostly through the suppression of adipose lipolysis, which reduces delivery of nonesterified fatty acids and glycerol to the liver
The major direct effect of insulin on hepatic glucose metabolism is the acute regulation of hepatic glycogen metabolism; however, hyperglycaemia and hyperinsulinaemia are required to maximally stimulate net hepatic glycogenesis
Lipid-induced hepatic insulin resistance, hyperglucagonaemia and excessive adipose lipolysis represent three pathophysiological processes that might be amenable to pharmacological intervention in humans who have impaired hepatic glucose metabolism
The balance of catabolic and anabolic glucose fluxes in the liver is crucial for glucose homeostasis and is disturbed in diabetes mellitus. In this Review, the authors discuss progress in our understanding of the regulation of hepatic glucose metabolism and highlight potential therapeutic targets for decreasing hepatic glucose production in T2DM, including lipid-induced hepatic insulin resistance, hyperglucagonaemia and excessive adipose lipolysis.
The liver is crucial for the maintenance of normal glucose homeostasis — it produces glucose during fasting and stores glucose postprandially. However, these hepatic processes are dysregulated in type 1 and type 2 diabetes mellitus, and this imbalance contributes to hyperglycaemia in the fasted and postprandial states. Net hepatic glucose production is the summation of glucose fluxes from gluconeogenesis, glycogenolysis, glycogen synthesis, glycolysis and other pathways. In this Review, we discuss the
in vivo
regulation of these hepatic glucose fluxes. In particular, we highlight the importance of indirect (extrahepatic) control of hepatic gluconeogenesis and direct (hepatic) control of hepatic glycogen metabolism. We also propose a mechanism for the progression of subclinical hepatic insulin resistance to overt fasting hyperglycaemia in type 2 diabetes mellitus. Insights into the control of hepatic gluconeogenesis by metformin and insulin and into the role of lipid-induced hepatic insulin resistance in modifying gluconeogenic and net hepatic glycogen synthetic flux are also discussed. Finally, we consider the therapeutic potential of strategies that target hepatosteatosis, hyperglucagonaemia and adipose lipolysis.
Journal Article
Intestinal gluconeogenesis prevents obesity-linked liver steatosis and non-alcoholic fatty liver disease
by
Mithieux, Gilles
,
Vily-Petit, Justine
,
Soty-Roca, Maud
in
Animals
,
Chemokine CCL2 - metabolism
,
Cirrhosis
2020
ObjectiveHepatic steatosis accompanying obesity is a major health concern, since it may initiate non-alcoholic fatty liver disease (NAFLD) and associated complications like cirrhosis or cancer. Intestinal gluconeogenesis (IGN) is a recently described function that contributes to the metabolic benefits of specific macronutrients as protein or soluble fibre, via the initiation of a gut-brain nervous signal triggering brain-dependent regulations of peripheral metabolism. Here, we investigate the effects of IGN on liver metabolism, independently of its induction by the aforementioned macronutrients.DesignTo study the specific effects of IGN on hepatic metabolism, we used two transgenic mouse lines: one is knocked down for and the other overexpresses glucose-6-phosphatase, the key enzyme of endogenous glucose production, specifically in the intestine.ResultsWe report that mice with a genetic overexpression of IGN are notably protected from the development of hepatic steatosis and the initiation of NAFLD on a hypercaloric diet. The protection relates to a diminution of de novo lipogenesis and lipid import, associated with benefits at the level of inflammation and fibrosis and linked to autonomous nervous system. Conversely, mice with genetic suppression of IGN spontaneously exhibit increased hepatic triglyceride storage associated with activated lipogenesis pathway, in the context of standard starch-enriched diet. The latter is corrected by portal glucose infusion mimicking IGN.ConclusionWe conclude that IGN per se has the capacity of preventing hepatic steatosis and its eventual evolution toward NAFLD.
Journal Article