Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
128 result(s) for "GLYCOGENE"
Sort by:
Databases and Bioinformatic Tools for Glycobiology and Glycoproteomics
Glycosylation plays critical roles in various biological processes and is closely related to diseases. Deciphering the glycocode in diverse cells and tissues offers opportunities to develop new disease biomarkers and more effective recombinant therapeutics. In the past few decades, with the development of glycobiology, glycomics, and glycoproteomics technologies, a large amount of glycoscience data has been generated. Subsequently, a number of glycobiology databases covering glycan structure, the glycosylation sites, the protein scaffolds, and related glycogenes have been developed to store, analyze, and integrate these data. However, these databases and tools are not well known or widely used by the public, including clinicians and other researchers who are not in the field of glycobiology, but are interested in glycoproteins. In this study, the representative databases of glycan structure, glycoprotein, glycan–protein interactions, glycogenes, and the newly developed bioinformatic tools and integrated portal for glycoproteomics are reviewed. We hope this overview could assist readers in searching for information on glycoproteins of interest, and promote further clinical application of glycobiology.
GlycoMaple: recent updates and applications in visualization and analysis of glycosylation pathways
Post-translational modifications including glycosylation, phosphorylation, and lipidation expand the functionality and diversity of proteins. Protein glycosylation is one of the most abundant post-translational modifications in mammalian cells. The glycosylation process is regulated at multiple steps, including transcription, translation, protein folding, intracellular transport, and localization, and activity of glycosyltransferases and glycoside hydrolases. The glycosylation process is also affected by the concentration of sugar nucleotides in the lumen of the Golgi apparatus. Unlike the synthesis of other biological macromolecules, such as nucleic acids and proteins, glycan biosynthesis is not a template-driven process. In addition, the chemical complexity of glycan structures makes the glycosylation network extraordinarily intricate. We previously developed a web-based tool specially focused on glycan metabolic pathways known as GlycoMaple, which is able to easily visualize and estimate glycosylation pathways based on gene expression data. We recently updated GlycoMaple to incorporate the new genes and glycosylation pathways. Here, we introduce and discuss the uses and upgrades of GlycoMaple.
The glycogene alterations and potential effects in esophageal squamous cell carcinoma
Background Aberrant glycosylation is one of the hallmarks of cancer. The profile of glycoprotein expression caused by abnormal glycosylation has been revealed, while abnormal glycogenes that may disturb the structure of glycans have not yet been identified in esophageal squamous cell carcinoma (ESCC). Methods Genomic alterations driven by differentially expressed glycogenes in ESCC were compared with matched normal tissues by multi-omics analysis. Immunohistochemistry, MTT, colony formation, transwell assays, subcutaneous tumor formation experiments and tail vein injection were used to study the expression and the effect on the proliferation and metastasis of the differentially expressed glycogenes POFUT1 and RPN1 in ESCC. In the alkyne fucose labeling experiment, AAL lectin affinity chromatography and immunoprecipitation were used to explore the mechanism of POFUT1 in ESCC. Results The expression of the POFUT1 and RPN1 glycogenes were upregulated, as determined by genomic copy number gain and proteomics analysis. The overexpression of POFUT1 or RPN1 was associated with poor prognosis in ESCC patients and affected the proliferation and metastasis of ESCC in vivo and in vitro. The overexpression of POFUT1 increased the overall fucosylation level and activated the Notch signaling pathway, which partially mediated POFUT1 induced pro-migration in ESCC. The regulation of malignant progression of ESCC by RPN1 may be related to the TNF signaling pathway, p53 signaling pathway, etc. Conclusions Our study fills a gap in the study of abnormal glycogenes and highlights the potential role of the POFUT1/Notch axis in ESCC. Moreover, our study identifies POFUT1 and RPN1 as promising anticancer targets in ESCC.
Identification of glycogene-type and validation of ST3GAL6 as a biomarker predicts clinical outcome and cancer cell invasion in urinary bladder cancer
Urinary bladder cancer (UBC) is one of the most common causes of morbidity and mortality worldwide characterized by a high risk of invasion and metastasis; however, the molecular classification biomarkers and underlying molecular mechanisms for UBC patient stratification on clinical outcome need to be investigated. A systematic transcriptomic analysis of 185 glycogenes in the public UBC datasets with survival information and clinicopathological parameters were performed using unsupervised hierarchical clustering. The gene signature for glycogene-type classification was identified using Limma package in R language, and correlated to 8 known molecular features by Gene Set Variation Analysis (GSVA). The clinical relevance and function of a glycogene was characterized by immunohistochemistry in UBC patient samples, and quantitative RT-PCR, Western blotting, promoter activity, MAL II blotting, immunofluorescence staining, wound healing, and transwell assays in UBC cells. A 14-glycogene signature for glycogene-type classification was identified. Among them, ST3GAL6, a glycotransferase to transfer sialic acid to 3'-hydroxyl group of a galactose residue, showed a significant negative association with the subtype with luminal feature in UBC patients (n=2,130 in total). Increased ST3GAL6 was positively correlated to tumor stage, grade, and survival in UBCs from public datasets or our cohort (n=52). Transcription factor GATA3, a luminal-specific marker for UBC, was further identified as a direct upstream regulator of ST3GAL6 to negatively regulate its transactivation. ST3GAL6 depletion decreased MAL II level, cell invasion and migration in 5637 and J82 UBC cells. ST3GAL6 could reverse the effects of GATA3 on global sialylation and cell invasion in SW780 cells. Herein, we successfully identified a novel 14-gene signature for glycogene-type classification of UBC patients. ST3GAL6 gene, from this signature, was demonstrated as a potential biomarker for poor outcomes and cell invasion in UBCs.
Identification of glycogene-based prognostic signature and validation of B3GNT7 as a potential biomarker and therapeutic target in breast cancer
Background Breast cancer is the most common cancer worldwide, with the fifth highest mortality rate among all cancers and high risk of metastasis. However, potential biomarkers and molecular mechanisms underlying the stratification of breast cancer in terms of clinical outcomes remain to be investigated. Therefore, we aimed to find a novel prognostic biomarker and therapeutic target for breast cancer patients. Methods Unsupervised hierarchical clustering was used to perform comprehensive transcriptomic study of total 185 glycogenes in public datasets of breast cancer with clinicopathological and survival information. A glycogene-based signature for subtype classification was discovered using Limma packages, and relevance to four known molecular features was identified by GSVA. Experimental verification was performed and biological functions of B3GNT7 were characterized by quantitative RT-PCR, western blot, transwell assays, and lectin immunofluorescence staining in breast cancer cells. Results A 23-glycogene signature was identified for the classification of breast cancer. Among the 23 glycogenes, B3GNTs showed significantly positive associations with ER − /Her2 − subtype in breast cancer patients ( n  = 2655). Overexpressed B3GNT7 were correlated with poor prognosis in breast cancer patients based on public datasets. B3GNT7 depletion inhibited cell proliferation, migration, and invasion, and decreased global fucosylation in MDA-MB-231 and HCC1937 breast cancer cells. Conclusions Herein, we discovered a unique 23-gene signature for breast cancer patient glycogene-type classification. Among these genes, B3GNT7 was shown to be a potential biomarker for unfavorable outcomes and therapeutic target of breast cancer.
Epigenetic Regulation of Glycosylation in Cancer and Other Diseases
In the last few decades, the newly emerging field of epigenetic regulation of glycosylation acquired more importance because it is unraveling physiological and pathological mechanisms related to glycan functions. Glycosylation is a complex process in which proteins and lipids are modified by the attachment of monosaccharides. The main actors in this kind of modification are the glycoenzymes, which are translated from glycosylation-related genes (or glycogenes). The expression of glycogenes is regulated by transcription factors and epigenetic mechanisms (mainly DNA methylation, histone acetylation and noncoding RNAs). This review focuses only on these last ones, in relation to cancer and other diseases, such as inflammatory bowel disease and IgA1 nephropathy. In fact, it is clear that a deeper knowledge in the fine-tuning of glycogenes is essential for acquiring new insights in the glycan field, especially if this could be useful for finding novel and personalized therapeutics.
Glycosylation Pathways Targeted by Deregulated miRNAs in Autism Spectrum Disorder
Autism Spectrum Disorder (ASD) is a complex condition with a multifactorial aetiology including both genetic and epigenetic factors. MicroRNAs (miRNAs) play a role in ASD and may influence metabolic pathways. Glycosylation (the glycoconjugate synthesis pathway) is a necessary process for the optimal development of the central nervous system (CNS). Congenital Disorders of Glycosylation (CDGs) (CDGs) are linked to over 180 genes and are predominantly associated with neurodevelopmental disorders (NDDs) including ASD. From a literature search, we considered 64 miRNAs consistently deregulated in ASD patients (ASD-miRNAs). Computational tools, including DIANA-miRPath v3.0 and TarBase v8, were employed to investigate the potential involvement of ASD-miRNAs in glycosylation pathways. A regulatory network constructed through miRNet 2.0 revealed the involvement of these miRNAs in targeting genes linked to glycosylation. Protein functions were further validated through the Human Protein Atlas. A total of twenty-five ASD-miRNAs were identified, including nine miRNAs that were differentially expressed in cells or brain tissue in ASD patients and associated with glycosylation pathways, specifically protein N- and O-glycosylation and glycosaminoglycan biosynthesis (heparan sulfate). A number of CDG genes and/or ASD-risk genes, including DOLK, GALNT2, and EXT1, were identified as targets, along with validated interactions involving four key miRNAs (hsa-miR-423-5p, hsa-miR-30c-5p, hsa-miR-195-5p, and hsa-miR-132-5p). B4GALT1, an ASD susceptibility gene, emerged as a central regulatory hub, reinforcing the link between glycosylation and ASD. In sum, the evidence presented here supports the hypothesis that ASD-miRNAs mediate the epigenetic regulation of glycosylation, thus unveiling possible novel patho-mechanisms underlying ASD.
Hallmarks of glycogene expression and glycosylation pathways in squamous and adenocarcinoma cervical cancer
Dysregulation of glycogene expression in cancer can lead to aberrant glycan expression, which can promote tumorigenesis. Cervical cancer (CC) displays an increased expression of glycogenes involved in sialylation and sialylated glycans. Here, we show a comprehensive analysis of glycogene expression in CC to identify glycogene expression signatures and the possible glycosylation pathways altered. First, we performed a microarray expression assay to compare glycogene expression changes between normal and cervical cancer tissues. Second, we used 401 glycogenes to analyze glycogene expression in adenocarcinoma and squamous carcinoma from RNA-seq data at the cBioPortal for Cancer Genomics. The analysis of the microarray expression assay indicated that CC displayed an increase in glycogenes related to GPI-anchored biosynthesis and a decrease in genes associated with chondroitin and dermatan sulfate with respect to normal tissue. Also, the glycogene analysis of CC samples by the RNA-seq showed that the glycogenes involved in the chondroitin and dermatan sulfate pathway were downregulated. Interestingly the adenocarcinoma tumors displayed a unique glycogene expression signature compared to squamous cancer that shows heterogeneous glycogene expression divided into six types. Squamous carcinoma type 5 (SCC-5) showed increased expression of genes implicated in keratan and heparan sulfate synthesis, glycosaminoglycan degradation, ganglio, and globo glycosphingolipid synthesis was related to poorly differentiated tumors and poor survival. Squamous carcinoma type 6 (SCC-6) displayed an increased expression of genes involved in chondroitin/dermatan sulfate synthesis and lacto and neolacto glycosphingolipid synthesis and was associated with nonkeratinizing squamous cancer and good survival. In summary, our study showed that CC tumors are not a uniform entity, and their glycome signatures could be related to different clinicopathological characteristics.
Alteration of N-glycans and Expression of Their Related Glycogenes in the Epithelial-Mesenchymal Transition of HCV29 Bladder Epithelial Cells
The epithelial-mesenchymal transition (EMT) is an essential step in the proliferation and metastasis of solid tumor cells, and glycosylation plays a crucial role in the EMT process. Certain aberrant glycans have been reported as biomarkers during bladder cancer progression, but global variation of N-glycans in this type of cancer has not been previously studied. We examined the profiles of N-glycan and glycogene expression in transforming growth factor-beta (TGFβ)-induced EMT using non-malignant bladder transitional epithelium HCV29 cells. These expression profiles were analyzed by mass spectrometry, lectin microarray analysis, and GlycoV4 oligonucleotide microarray analysis, and confirmed by lectin histochemistry and real-time RT-PCR. The expression of 5 N-glycan-related genes were notably altered in TGFβ-induced EMT. In particular, reduced expression of glycogene man2a1, which encodes α-mannosidase 2, contributed to the decreased proportions of bi-, tri- and tetra-antennary complex N-glycans, and increased expression of hybrid-type N-glycans. Decreased expression of fuca1 gene, which encodes Type 1 α-L-fucosidase, contributed to increased expression of fucosylated N-glycans in TGFβ-induced EMT. Taken together, these findings clearly demonstrate the involvement of aberrant N-glycan synthesis in EMT in these cells. Integrated glycomic techniques as described here will facilitate discovery of glycan markers and development of novel diagnostic and therapeutic approaches to bladder cancer.
Identification of drug responsible glycogene signature in liver carcinoma from meta-analysis using RNA-seq data
Glycans have attracted much attention in cancer therapeutic strategies, and cell surface proteins and lipids with glycans are known to be altered during the carcinogenic process. However, our understanding of how the glycogenes profile responds to drug stimulation remains incomplete. In this study, we search public databases for Sequence Read Archive data on drug-treated liver cancer cells, with the aim to comprehensively analyze the drug responses of glycogenes via bioinformatic meta-analysis. The study comprised 86 datasets, encompassing eight distinct liver cancer cell lines and 13 different drugs. Differentially expressed genes were quantified, and 399 glycogenes were identified. The glycogenes signature was then analyzed using bioinformatics methodologies. In the Protein-protein interaction network analysis, we identified drug-responsive glycogenes such as Beta-1,4-Galactosyltransferase 1, GDP-Mannose 4,6-Dehydratase, UDP-Glucose Ceramide Glucosyltransferase, and Solute Carrier Family 2 Member 4 as key glycan biomarkers. In the enrichment analysis using the pathway list of glycogenes, the results also demonstrated that drug stimulation resulted in alterations to glycopathway-related genes involved in several processes, namely O-Mannosylation, POMGNT2 Type, Capping, Heparan Sulfate Sulfation, and Glucuronidation pathways. These genes and pathways commonly exhibit variable expression across multiple liver cancer cells in response to the same drug, making them potential targets for new cancer therapies. In addition to their primary roles, drugs may also participate in the regulation of glycans. The insights from this study could pave the way for the development of liver cancer therapies that target the regulation of gene profiles involved in the biosynthesis of glycans.