Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
118 result(s) for "Ganglia, Sympathetic - pathology"
Sort by:
Multi-organ distribution of phosphorylated α-synuclein histopathology in subjects with Lewy body disorders
A sensitive immunohistochemical method for phosphorylated α-synuclein was used to stain sets of sections of spinal cord and tissue from 41 different sites in the bodies of 92 subjects, including 23 normal elderly, 7 with incidental Lewy body disease (ILBD), 17 with Parkinson’s disease (PD), 9 with dementia with Lewy bodies (DLB), 19 with Alzheimer’s disease with Lewy bodies (ADLB) and 17 with Alzheimer’s disease with no Lewy bodies (ADNLB). The relative densities and frequencies of occurrence of phosphorylated α-synuclein histopathology (PASH) were tabulated and correlated with diagnostic category. The greatest densities and frequencies of PASH occurred in the spinal cord, followed by the paraspinal sympathetic ganglia, the vagus nerve, the gastrointestinal tract and endocrine organs. The frequency of PASH within other organs and tissue types was much lower. Spinal cord and peripheral PASH was most common in subjects with PD and DLB, where it appears likely that it is universally widespread. Subjects with ILBD had lesser densities of PASH within all regions, but had frequent involvement of the spinal cord and paraspinal sympathetic ganglia, with less-frequent involvement of end-organs. Subjects with ADLB had infrequent involvement of the spinal cord and paraspinal sympathetic ganglia with rare involvement of end-organs. Within the gastrointestinal tract, there was a rostrocaudal gradient of decreasing PASH frequency and density, with the lower esophagus and submandibular gland having the greatest involvement and the colon and rectum the lowest.
Autonomic neurocristopathy-associated mutations in PHOX2B dysregulate Sox10 expression
The most common forms of neurocristopathy in the autonomic nervous system are Hirschsprung disease (HSCR), resulting in congenital loss of enteric ganglia, and neuroblastoma (NB), childhood tumors originating from the sympathetic ganglia and adrenal medulla. The risk for these diseases dramatically increases in patients with congenital central hypoventilation syndrome (CCHS) harboring a nonpolyalanine repeat expansion mutation of the Paired-like homeobox 2b (PHOX2B) gene, but the molecular mechanism of pathogenesis remains unknown. We found that introducing nonpolyalanine repeat expansion mutation of the PHOX2B into the mouse Phox2b locus recapitulates the clinical features of the CCHS associated with HSCR and NB. In mutant embryos, enteric and sympathetic ganglion progenitors showed sustained sex-determining region Y (SRY) box10 (Sox10) expression, with impaired proliferation and biased differentiation toward the glial lineage. Nonpolyalanine repeat expansion mutation of PHOX2B reduced transactivation of wild-type PHOX2B on its known target, dopamine β-hydroxylase (DBH), in a dominant-negative fashion. Moreover, the introduced mutation converted the transcriptional effect of PHOX2B on a Sox10 enhancer from repression to transactivation. Collectively, these data reveal that nonpolyalanine repeat expansion mutation of PHOX2B is both a dominant-negative and gain-of-function mutation. Our results also demonstrate that Sox10 regulation by PHOX2B is pivotal for the development and pathogenesis of the autonomic ganglia.
Cardiac sympathetic denervation precedes neuronal loss in the sympathetic ganglia in Lewy body disease
Decreased cardiac uptake of meta-iodobenzylguanidine (MIBG) on [123I]MIBG myocardial scintigraphy has been reported in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). We hypothesized that cardiac sympathetic denervation might account for the pathomechanism. To elucidate the extent, frequency and pattern of cardiac sympathetic nerve involvement in Lewy body disease and related neurodegenerative disorders, we immunohistochemically examined heart tissues from patients with PD (n=11), DLB (n=7), DLB with Alzheimer's disease (DLB/AD; n=4), multiple system atrophy (MSA; n=8), progressive supranuclear palsy (PSP; n=5), pure AD (n=10) and control subjects (n=5) together with sympathetic ganglia from patients with PD (n=5) and control subjects (n=4), using an antibody against tyrosine hydroxylase (TH). TH-immunoreactive nerve fibers in the hearts had almost entirely disappeared in nearly all the patients with PD, DLB and DLB/AD, whereas they were well preserved in all the patients with PSP and pure AD as well as in all except for one patient with MSA. In PD, neurons in the sympathetic ganglia were preserved in all except for one patient. Decreased cardiac uptake of MIBG in Lewy body disease reflects actual cardiac sympathetic denervation, which precedes the neuronal loss in the sympathetic ganglia.
Parkinson’s disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons
Clinical signs frequently recognized in early phases of sporadic Parkinson's disease (PD) may include autonomic dysfunctions and the experience of pain. Early disease-related lesions that may account for these symptoms are presently unknown or incompletely known. In this study, immunocytochemistry for alpha-synuclein was used to investigate the first relay stations of the pain system as well as parasympathetic and sympathetic pre- and postganglionic nerve cells in the lower brainstem, spinal cord, and coeliac ganglion in 100 microm polyethylene glycol embedded sections from six autopsy individuals, whose brains were staged for PD-associated synucleinopathy. Immunoreactive inclusions were found for the first time in spinal cord lamina I neurons. Lower portions of the spinal cord downwards of the fourth thoracic segment appeared to be predominantly affected, whereas the spinal trigeminal nucleus was virtually intact. Additional involvement was seen in parasympathetic preganglionic projection neurons of the vagal nerve, in sympathetic preganglionic neurons of the spinal cord, and in postganglionic neurons of the coeliac ganglion. The known interconnectivities between all of these components offer a possible explanation for their particular vulnerability. Lamina I neurons (pain system) directly project upon sympathetic relay centers, and these, in turn, exert influence on the parasympathetic regulation of the enteric nervous system. This constellation indicates that physical contacts between vulnerable regions play a key role in the pathogenesis of PD.
Spectrum of abnormalities of sympathetic tyrosine hydroxylase and alpha-synuclein in chronic autonomic failure
ObjectiveLewy body forms of primary chronic autonomic failure (CAF) such as incidental Lewy body disease (ILBD), Parkinson’s disease (PD), and pure autonomic failure evolving into dementia with Lewy bodies (PAF+DLB) feature cardiac sympathetic denervation, whereas multiple system atrophy (MSA) in most cases does not. What links Lewy bodies with cardiac sympathetic denervation in CAF? In familial PD, abnormalities of the alpha-synuclein (AS) gene cause CAF and cardiac sympathetic denervation; and in sporadic PD, brainstem Lewy bodies contain AS co-localized with tyrosine hydroxylase (TH), a marker of catecholaminergic neurons. Cytotoxicity from AS deposition within sympathetic neurons might explain noradrenergic denervation in Lewy body forms of CAF. We used immunofluorescence microscopy (IM) to explore this possibility in sympathetic ganglia obtained at autopsy from CAF patients.MethodsImmunoreactive AS and TH were imaged in sympathetic ganglion tissue from 6 control subjects (2 with ILBD), 5 PD patients (1 with concurrent PSP), and 3 patients with CAF (2 PAF + DLB, 1 MSA).ResultsMSA involved normal ganglionic TH and no AS deposition. In ILBD TH was variably decreased, and TH and AS were co-localized in Lewy bodies. In PD TH was substantially decreased, and TH and AS were co-localized in Lewy bodies. In PAF + DLB TH was virtually absent, but AS was present in Lewy bodies. The PD + PSP patient had AS co-localized with tau but not TH.ConclusionsSympathetic denervation and intraneuronal AS deposition are correlated across CAF syndromes, consistent with a pathogenic contribution of synucleinopathy to cardiac noradrenergic deficiency in Lewy body diseases.
Prion type 2 selection in sporadic Creutzfeldt–Jakob disease affecting peripheral ganglia
In sporadic Creutzfeldt–Jakob disease (sCJD), the pathological changes appear to be restricted to the central nervous system. Only involvement of the trigeminal ganglion is widely accepted. The present study systematically examined the involvement of peripheral ganglia in sCJD utilizing the currently most sensitive technique for detecting prions in tissue morphologically. The trigeminal, nodose, stellate, and celiac ganglia, as well as ganglia of the cervical, thoracic and lumbar sympathetic trunk of 40 patients were analyzed with the paraffin-embedded tissue (PET)-blot method. Apart from the trigeminal ganglion, which contained protein aggregates in five of 19 prion type 1 patients, evidence of prion protein aggregation was only found in patients associated with type 2 prions. With the PET-blot, aggregates of prion protein type 2 were found in all trigeminal (17/17), in some nodose (5 of 7) and thoracic (3 of 6) ganglia, as well as in a few celiac (4 of 19) and lumbar (1 of 5) ganglia of sCJD patients. Whereas aggregates of both prion types may spread to dorsal root ganglia, more CNS-distant ganglia seem to be only involved in patients accumulating prion type 2. Whether the prion type association is due to selection by prion type-dependent replication, or due to a prion type-dependent property of axonal spread remains to be resolved in further studies.
Glutathione biosynthesis is upregulated at the initiation of MYCN-driven neuroblastoma tumorigenesis
The MYCN gene is amplified and overexpressed in a large proportion of high stage neuroblastoma patients and has been identified as a key driver of tumorigenesis. However, the mechanism by which MYCN promotes tumor initiation is poorly understood. Here we conducted metabolic profiling of pre-malignant sympathetic ganglia and tumors derived from the TH-MYCN mouse model of neuroblastoma, compared to non-malignant ganglia from wildtype littermates. We found that metabolites involved in the biosynthesis of glutathione, the most abundant cellular antioxidant, were the most significantly upregulated metabolic pathway at tumor initiation, and progressively increased to meet the demands of tumorigenesis. A corresponding increase in the expression of genes involved in ribosomal biogenesis suggested that MYCN-driven transactivation of the protein biosynthetic machinery generated the necessary substrates to drive glutathione biosynthesis. Pre-malignant sympathetic ganglia from TH-MYCN mice had higher antioxidant capacity and required glutathione upregulation for cell survival, when compared to wildtype ganglia. Moreover, in vivo administration of inhibitors of glutathione biosynthesis significantly delayed tumorigenesis when administered prophylactically and potentiated the anticancer activity of cytotoxic chemotherapy against established tumors. Together these results identify enhanced glutathione biosynthesis as a selective metabolic adaptation required for initiation of MYCN-driven neuroblastoma, and suggest that glutathione-targeted agents may be used as a potential preventative strategy, or as an adjuvant to existing chemotherapies in established disease. •Metabolomics in TH-MYCN mice demonstrates early upregulation of glutathione biosynthesis.•MYCN increases protein biosynthesis to satisfy the substrate demand for glutathione production.•Glutathione acts as an antioxidant mechanism for pre-cancer cell survival at tumor initiation.
Changes in Somatostatin-Like Immunoreactivity in the Sympathetic Neurons Projecting to the Prepyloric Area of the Porcine Stomach Induced by Selected Pathological Conditions
The aim of the present study was to define changes in the expression of somatostatin (SOM) in the sympathetic perikarya innervating the porcine stomach prepyloric area during acetylsalicylic-acid-induced gastritis (ASA) and experimentally induced hyperacidity (HCL) and following partial stomach resection (RES). On day 1, the stomachs were injected with neuronal retrograde tracer Fast Blue (FB). Animals in the ASA group were given acetylsalicylic acid orally for 21 days. On the 22nd day after FB injection, partial stomach resection was performed in RES animals. On day 23, HCL animals were intragastrically given 5 ml/kg of body weight of a 0.25 M aqueous solution of hydrochloric acid. On day 28, all pigs were euthanized. Then, 14-μm thick cryostat sections of the coeliac-superior mesenteric ganglion (CSMG) complexes were processed for routine double-labelling immunofluorescence. All pathological conditions studied resulted in upregulation of SOM-like (SOM-LI) immunoreactivity (from 14.97±1.57% in control group to 33.72±4.39% in the ASA group, to 39.02±3.65% in the RES group, and to 29.63±0.85% in the HCL group). The present studies showed that altered expression of SOM occurs in sympathetic neurons supplying the prepyloric area of the porcine stomach during adaptation to various pathological insults.
The Etiology of Primary Hyperhidrosis: A Systematic Review
Purpose Primary hyperhidrosis is a pathological disorder of unknown etiology, affecting 0.6-5% of the population, and causing severe functional and social handicaps. As the etiology is unknown, it is not possible to treat the root cause. Recently some differences between affected and non-affected people have been reported. The aim of this review is to summarize these new etiological data. Methods Search of the literature was performed in the PubMed/Medline Database and pertinent articles were retrieved and reviewed. Additional publications were obtained from the references of these articles. Results Some anatomical and pathophysiological characteristics (as well as enzymatic, metabolic, and neurological dysfunctions) have been observed in hyperhidrotic subjects; three main possible etiological factors predominate. A familial trait seems to exist, and genetic loci associated with hyperhidrosis have been identified. Histological differences were observed in sympathetic ganglia of hyperhidrotic subjects: the ganglia were larger and contained a higher number of ganglion cells. A higher expression of acetylcholine and alpha-7 neuronal nicotinic receptor subunit in the sympathetic ganglia of patients with hyperhidrosis has been reported. Conclusions Despite these accumulated data, the etiology of primary hyperhidrosis remains obscure. Nevertheless, three main lines for future research seem to be delineated: genetics, histological observations, and enzymatic studies.
Superior Hypogastric Plexus Combined with Ganglion Impar Neurolytic Blocks for Pelvic and/or Perineal Cancer Pain Relief
Background: The superior hypogastric plexus (SHGP) carries afferents from the viscera of the lower abdomen and pelvis. Neurolytic block of this plexus is used for reducing pain resulting from malignancy in these organs. The ganglion impar (GI) innervats the perineum, distal rectum, anus, distal urethra, vulva, and distal third of the vagina. Different approaches to the ganglion impar neurolysis have been described in the literature. Objectives: To assess the feasibility, safety, and efficacy of combining the block of the SHGP through the postero-median transdiscal approach with the GI block by the transsacro-coccygeal approach for relief of pelvic and/or perineal pain caused by pelvic and/or perineal malignancies or any cancer related causes. Methods: Fifteen patients who had cancer-related pelvic pain, perineal pain, or both received a combined SHGP neurolytic block through the postero-median transdiscal approach using a 20-gauge Chiba needle and injection of 10 mL of 10% phenol in saline plus a GI neurolytic block by the trans-sacro-coccygeal approach using a 22-gauge 5 cm needle and injection of 4 – 6 mL of 8% phenol in saline. Pain intensity (measured using a visual analogue scale) and oral morphine consumption pre- and post-procedure were measured. Results: All patients presented with cancer-related pelvic, perineal, or pelviperineal pain. Pain scores were reduced from a mean (± SD) of 7.87 ± 1.19 pre-procedurally to 2.40 ± 2.10 one week post-procedurally (P < 0.05). In addition, the mean consumption of morphine (delivered via 30 mg sustained-release morphine tablets) was reduced from 98.00 ± 34.89 mg to 32.00 ± 28.48 mg after one week (P < 0.05). No complications or serious side effects were encountered during or after the block. Limitations: This study is limited by its small sample size and non-randomized study. Conclusion: A combined neurolytic SHGP block with GI block is an effective and safe technique for reducing pain in cancer patients presented with pelvic and/or perineal pain. Also, a combined SHGP block through a posteromedian transdiscal approach with a GI block through a trans-sacrococcygeal approach may be considered more effective and easier to perform than the recently invented bilateral inferior hypogastric plexus neurolysis through a transsacral approach. Key words: Superior hypogastric plexus block, ganglion impar block, cancer pain, pelvic pain, perineal pain