Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
6,798
result(s) for
"Gases Separation."
Sort by:
Membranes for gas separations
\"This book aims at illustrating several examples of different membrane compositions ranging from inorganic, polymeric, metallic, metal organic framework, and composite which have been successfully deployed to separate industrially relevant gas mixtures including hydrogen, nitrogen, methane, carbon dioxide, olefins/parafins among others. Each book chapter highlights some of the current and key fundamental and technological challenges for these membranes that must be overcome in order to envision its application at industrial level.\"--Page [4] of cover.
Pentiptycene-based ladder polymers with configurational free volume for enhanced gas separation performance and physical aging resistance
2021
Polymers of intrinsic microporosity (PIMs) have shown promise in pushing the limits of gas separation membranes, recently redefining upper bounds for a variety of gas pair separations. However, many of these membranes still suffer from reductions in permeability over time, removing the primary advantage of this class of polymer. In this work, a series of pentiptycene-based PIMs incorporated into copolymers with PIM-1 are examined to identify fundamental structure–property relationships between the configuration of the pentiptycene backbone and its accompanying linear or branched substituent group. The incorporation of pentiptycene provides a route to instill a more permanent, configuration-based free volume, resistant to physical aging via traditional collapse of conformation-based free volume. PPIM-ip-C and PPIM-np-S, copolymers with C- and S-shape backbones and branched isopropoxy and linear n-propoxy substituent groups, respectively, each exhibited initial separation performance enhancements relative to PIM-1. Additionally, aging-enhanced gas permeabilities were observed, a stark departure from the typical permeability losses pure PIM-1 experiences with aging. Mixed-gas separation data showed enhanced CO₂/CH₄ selectivity relative to the pure-gas permeation results, with only ∼20% decreases in selectivity when moving from a CO₂ partial pressure of ∼2.4 to ∼7.1 atm (atmospheric pressure) when utilizing a mixed-gas CO₂/CH₄ feed stream. These results highlight the potential of pentiptycene’s intrinsic, configurational free volume for simultaneously delivering size-sieving above the 2008 upper bound, along with exceptional resistance to physical aging that often plagues high free volume PIMs.
Journal Article
Gas Separation Membrane Module Modeling: A Comprehensive Review
by
Lipscomb, Glenn
,
Hornbostel, Katherine
,
Nemetz, Leo
in
Capital costs
,
Carbon dioxide
,
Carbon sequestration
2023
Membrane gas separation processes have been developed for diverse gas separation applications that include nitrogen production from air and CO2 capture from point sources. Membrane process design requires the development of stable and robust mathematical models that can accurately quantify the performance of the membrane modules used in the process. The literature related to modeling membrane gas separation modules and model use in membrane gas separation process simulators is reviewed in this paper. A membrane-module-modeling checklist is proposed to guide modeling efforts for the research and development of new gas separation membranes.
Journal Article
Mixed Matrix Membranes for Efficient CO2 Separation Using an Engineered UiO-66 MOF in a Pebax Polymer
2022
Mixed matrix membranes (MMMs) have attracted significant attention for overcoming the limitations of traditional polymeric membranes for gas separation through the improvement of both permeability and selectivity. However, the development of defect-free MMMs remains challenging due to the poor compatibility of the metal–organic framework (MOF) with the polymer matrix. Thus, we report a surface-modification strategy for a MOF through grafting of a polymer with intrinsic microporosity onto the surface of UiO-66-NH2. This method allows us to engineer the MOF–polymer interface in the MMMs using Pebax as a support. The insertion of a PIM structure onto the surface of UiO-66-NH2 provides additional molecular transport channels and enhances the CO2 transport by increasing the compatibility between the polymer and fillers for efficient gas separation. As a result, MMM with 1 wt% loading of PIM-grafted-MOF (PIM-g-MOF) exhibited very promising separation performance, with CO2 permeability of 247 Barrer and CO2/N2 selectivity of 56.1, which lies on the 2008 Robeson upper bound. Moreover, this MMM has excellent anti-aging properties for up to 240 days and improved mechanical properties (yield stress of 16.08 MPa, Young’s modulus of 1.61 GPa, and 596.5% elongation at break).
Journal Article
Preparation of Polyimide/Ionic Liquid Hybrid Membrane for CO2/CH4 Separation
2024
Imidazole ionic liquids (ILs) have good affinity and good solubility for carbon dioxide (CO2). Such ionic liquids, combined with polyimide membrane materials, can solve the problem that, today, CO2 is difficult to separate and recover. In this study, the ionic liquid (IL) of 1-ethyl-3-methylimidazolium tetrafluoroborate (IL1), 1-pentyl-3-methylimidazolium tetrafluoroborate (IL2), 1-octyl-3-methylimidazolium tetrafluoroborate (IL3), and 1-dodecylimidazolium tetrafluoroborate (IL4) with different contents were added to a polyimide matrix, and a series of polyimide membranes blended with ionic liquid were prepared using a high-speed mixer. The mechanical properties and gas separation permeability of the membranes were investigated. Among them, the selectivity of the PI/IL3 membrane for CO2/CH4 was 180.55, which was 2.5 times higher than the PI membrane, and its CO2 permeability was 16.25 Barrer, which exceeded the Robeson curve in 2008; the separation performance of the membrane was the best in this work.
Journal Article
Polyvinyl Alcohol/Zr-based Metal Organic Framework Mixed-matrix Membranes Synthesis and Application for Hydrogen Separation
2024
Membrane gas separation is an environmentally friendly and economical method used to separate valuable gases, industrial process gas wastes, and carbon dioxide from mixed gases. The most important part of this method is the membranes. Gas separation membranes are expected to have high separation and permeability performance, high mechanical strength, easy and fast production capability, and low prices. Polymer-based membranes are mostly preferred depending on the ease of modification capability. In this study, a zirconium-based metal organic framework (Zr-MOF, MIL-140 A) was synthesized and used as a filler within polyvinyl alcohol (PVA) matrix for the selective separation of hydrogen (H
2
) from carbon dioxide (CO
2
). The effect of MIL-140 A addition on the mechanical, structural, and morphological properties of PVA was evaluated. The MIL-140 A significantly improved the mechanical strength of the membrane. According to the gas separation results, the increasing concentration of MIL-140 A increased the selective separation performance of the nanocomposite membrane. The highest mechanical strength (43.1 MPa) and best film-forming ability were obtained with 3 wt% MIL-140 A loaded membrane. The ideal H
2
/CO
2
selectivity and hydrogen permeability were obtained as 5.6 and 944 Barrer, respectively at 2 bar feed pressure and room temperature. The highest ideal H
2
/CO
2
selectivity was obtained as 6.3 with the H2 permeability of 959 Barrer when the MIL-140 A ratio was 4 wt%.
Journal Article
Ti3C2 MXene Membranes for Gas Separation: Influence of Heat Treatment Conditions on D-Spacing and Surface Functionalization
by
Emerenciano, Aline Alencar
,
Barbosa, Ana Paula Cysne
,
Ran, Ke
in
Atmosphere
,
Carbon dioxide
,
Chemical Sciences
2022
Two-dimensional (2D) MXene materials have recently been the focus of membrane research due to their unique properties, such as their single-atomic-layer thickness, flexibility, molecular filtration abilities and microstructural similarities with graphene, which is currently the most efficient precursor material for gas separation applications. In addition, the potential to process nanoscale channels has motivated investigations of parameters which can improve membrane permeability and selectivity. Interlayer spacing and defects, which are still challenging to control, are among the most crucial parameters for membrane performance. Herein, the effect of heat treatment on the d-spacing of MXene nanosheets and the surface functionalization of nanolayers was shown regarding its impact on the gas diffusion mechanism. The distance of the layers was reduced by a factor of over 10 from 0.345 nm to 0.024 nm, the defects were reduced, and the surface functionalization was maintained upon treatment of the Ti3C2 membrane at 500 °C under an Ar/H2 atmosphere as compared to 80 °C under vacuum. This led to a change from Knudsen diffusion to molecular sieving, as demonstrated by single-gas permeation tests at room temperature. Overall, this work shows a simple and promising way to improve H2/CO2 selectivity via temperature treatment under a controlled atmosphere.
Journal Article
Incorporation of Carbocyclic Moieties into Polymer Structure: A Powerful Way to Polymers with Increased Microporosity
by
Alentiev, Dmitry A.
,
Zotkin, Maxim A.
,
Zaitsev, Kirill V.
in
Adsorption
,
Aging
,
Control methods
2025
Microporous soluble polymers attract great attention as materials for membrane gas separation, gas storage and transportation, as sorbents, supports for catalysts, and matrices for mixed matrix membranes. The key problems in the development of this area of polymer chemistry include the search for methods of controlling the porous structure parameters and ensuring the stability of their properties over time. In this connection, a fruitful approach is to introduce bulky and rigid, often framework carbocyclic moieties into the polymer backbones and side chains. This review discusses the effect of carbocyclic moieties on gas transport properties, BET surface area, and FFV of glassy polymers, such as polyacetylenes, polynorbornenes, polyimides, and ladder and partially ladder polymers. In the majority of cases, the incorporation of carbocyclic moieties makes it possible to controllably increase these three parameters. Carbocyclic moieties can also improve CO2/gas separation selectivity, which is displayed for ladder polymers and polynorbornenes.
Journal Article
Challenges, Opportunities and Future Directions of Membrane Technology for Natural Gas Purification: A Critical Review
by
Al-Sehemi, Abdullah G.
,
Imtiaz, Aniqa
,
Iqbal, Javed
in
Bonding strength
,
braid reinforced membrane
,
Braiding
2022
Natural gas is an important and fast-growing energy resource in the world and its purification is important in order to reduce environmental hazards and to meet the required quality standards set down by notable pipeline transmission, as well as distribution companies. Therefore, membrane technology has received great attention as it is considered an attractive option for the purification of natural gas in order to remove impurities such as carbon dioxide (CO2) and hydrogen sulphide (H2S) to meet the usage and transportation requirements. It is also recognized as an appealing alternative to other natural gas purification technologies such as adsorption and cryogenic processes due to its low cost, low energy requirement, easy membrane fabrication process and less requirement for supervision. During the past few decades, membrane-based gas separation technology employing hollow fibers (HF) has emerged as a leading technology and underwent rapid growth. Moreover, hollow fiber (HF) membranes have many advantages including high specific surface area, fewer requirements for maintenance and pre-treatment. However, applications of hollow fiber membranes are sometimes restricted by problems related to their low tensile strength as they are likely to get damaged in high-pressure applications. In this context, braid reinforced hollow fiber membranes offer a solution to this problem and can enhance the mechanical strength and lifespan of hollow fiber membranes. The present review includes a discussion about different materials used to fabricate gas separation membranes such as inorganic, organic and mixed matrix membranes (MMM). This review also includes a discussion about braid reinforced hollow fiber (BRHF) membranes and their ability to be used in natural gas purification as they can tackle high feed pressure and aggressive feeds without getting damaged or broken. A BRHF membrane possesses high tensile strength as compared to a self-supported membrane and if there is good interfacial bonding between the braid and the separation layer, high tensile strength, i.e., upto 170Mpa can be achieved, and due to these factors, it is expected that BRHF membranes could give promising results when used for the purification of natural gas.
Journal Article
Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles
by
Kusuda, Hiromu
,
Isfahani, Ali Pournaghshband
,
Wakimoto, Kazuki
in
639/301/1023/1025
,
639/301/923/1028
,
639/4077/4057
2017
Mixed matrix membranes (MMMs) for gas separation applications have enhanced selectivity when compared with the pure polymer matrix, but are commonly reported with low intrinsic permeability, which has major cost implications for implementation of membrane technologies in large-scale carbon capture projects. High-permeability polymers rarely generate sufficient selectivity for energy-efficient CO
2
capture. Here we report substantial selectivity enhancements within high-permeability polymers as a result of the efficient dispersion of amine-functionalized, nanosized metal–organic framework (MOF) additives. The enhancement effects under optimal mixing conditions occur with minimal loss in overall permeability. Nanosizing of the MOF enhances its dispersion within the polymer matrix to minimize non-selective microvoid formation around the particles. Amination of such MOFs increases their interaction with thepolymer matrix, resulting in a measured rigidification and enhanced selectivity of the overall composite. The optimal MOF MMM performance was verified in three different polymer systems, and also over pressure and temperature ranges suitable for carbon capture.
Mixed matrix membranes can separate CO
2
from flue gas mixtures but increasing selectivity without sacrificing permeability remains challenging. Selectivity can be increased with little loss in permeability by using nanoparticulate, amine-functionalized metal–organic framework fillers.
Journal Article