Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
211,531
result(s) for
"Gastrointestinal"
Sort by:
The digestive system
Introduction to the digestive system.
Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis
2018
Inflammasome signalling is an emerging pillar of innate immunity and has a central role in the regulation of gastrointestinal health and disease. Activation of the inflammasome complex mediates both the release of the pro-inflammatory cytokines IL-1β and IL-18 and the execution of a form of inflammatory cell death known as pyroptosis. In most cases, these mediators of inflammation provide protection against bacterial, viral and protozoal infections. However, unchecked inflammasome activities perpetuate chronic inflammation, which underpins the molecular and pathophysiological basis of gastritis, IBD, upper and lower gastrointestinal cancer, nonalcoholic fatty liver disease and obesity. Studies have also highlighted an inflammasome signature in the maintenance of gut microbiota and gut–brain homeostasis. Harnessing the immunomodulatory properties of the inflammasome could transform clinical practice in the treatment of acute and chronic gastrointestinal and extragastrointestinal diseases. This Review presents an overview of inflammasome biology in gastrointestinal health and disease and describes the value of experimental and pharmacological intervention in the treatment of inflammasome-associated clinical manifestations.
Journal Article
Gastrointestinal biofilms in health and disease
by
Motta Jean-Paul
,
Buret, André G
,
Vergnolle Nathalie
in
Biofilms
,
Digestive system
,
Gastrointestinal diseases
2021
Microorganisms colonize various ecological niches in the human habitat, as they do in nature. Predominant forms of multicellular communities called biofilms colonize human tissue surfaces. The gastrointestinal tract is home to a profusion of microorganisms with intertwined, but not identical, lifestyles: as isolated planktonic cells, as biofilms and in biofilm-dispersed form. It is therefore of major importance in understanding homeostatic and altered host–microorganism interactions to consider not only the planktonic lifestyle, but also biofilms and biofilm-dispersed forms. In this Review, we discuss the natural organization of microorganisms at gastrointestinal surfaces, stratification of microbiota taxonomy, biogeographical localization and trans-kingdom interactions occurring within the biofilm habitat. We also discuss existing models used to study biofilms. We assess the contribution of the host–mucosa biofilm relationship to gut homeostasis and to diseases. In addition, we describe how host factors can shape the organization, structure and composition of mucosal biofilms, and how biofilms themselves are implicated in a variety of homeostatic and pathological processes in the gut. Future studies characterizing biofilm nature, physical properties, composition and intrinsic communication could shed new light on gut physiology and lead to potential novel therapeutic options for gastrointestinal diseases.In this Review, Motta, Vergnolle and colleagues describe the organization of microorganisms into planktonic, biofilm and biofilm-dispersed forms in the gastrointestinal tract. The role of the host–biofilm relationship in gut homeostasis and disease is discussed.
Journal Article
Be good to your gut : the ultimate guide to gut health-- with 80 delicious recipes to feed your body and mind
\"What if the answer to being the healthiest and happiest you could be is down to your gut and the complex and diverse kingdom of bugs that live there? Be Good to Your Gut will be an insightful and beautifully curated book based that will help you to better understand digestion. Based on Eve Kalinik's modern, fresh and innovative approach to gut health, it will arm you with the knowledge of what truly reflects a healthy and happy gut, and teach you how to translate this onto the plate with colourful, vibrant and energetic foods. Combining solid science and practical advice with inspiring and delicious recipes, Be Good to Your Gut will highlight the importance of good gut health and the many reasons to be enthusiastic about healthy eating. It will teach readers how to use food to support digestion, without sacrificing taste and flavour.\"--Provided by publisher.
The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer
2021
Farnesoid X receptor (FXR) is a ligand-activated transcription factor involved in the control of bile acid (BA) synthesis and enterohepatic circulation. FXR can influence glucose and lipid homeostasis. Hepatic FXR activation by obeticholic acid is currently used to treat primary biliary cholangitis. Late-stage clinical trials investigating the use of obeticholic acid in the treatment of nonalcoholic steatohepatitis are underway. Mouse models of metabolic disease have demonstrated that inhibition of intestinal FXR signalling reduces obesity, insulin resistance and fatty liver disease by modulation of hepatic and gut bacteria-mediated BA metabolism, and intestinal ceramide synthesis. FXR also has a role in the pathogenesis of gastrointestinal and liver cancers. Studies using tissue-specific and global Fxr-null mice have revealed that FXR acts as a suppressor of hepatocellular carcinoma, mainly through regulating BA homeostasis. Loss of whole-body FXR potentiates progression of spontaneous colorectal cancer, and obesity-induced BA imbalance promotes intestinal stem cell proliferation by suppressing intestinal FXR in Apcmin/+ mice. Owing to altered gut microbiota and FXR signalling, changes in overall BA levels and specific BA metabolites probably contribute to enterohepatic tumorigenesis. Modulating intestinal FXR signalling and altering BA metabolites are potential strategies for gastrointestinal and liver cancer prevention and treatment. In this Review, studies on the role of FXR in metabolic diseases and gastrointestinal and liver cancer are discussed, and the potential for development of targeted drugs are summarized.Farnesoid X receptor (FXR) is involved in the control of bile acid synthesis and enterohepatic circulation. This Review discusses the role of FXR in metabolic diseases and gastrointestinal and liver cancers, highlighting underlying mechanisms and potential therapeutic targets.
Journal Article
Parkinson disease and the gut: new insights into pathogenesis and clinical relevance
by
Camilleri, Michael
,
Alberto, Travagli R
,
Browning, Kirsteen N
in
Animal models
,
Axons
,
Central nervous system
2020
The classic view portrays Parkinson disease (PD) as a motor disorder resulting from loss of substantia nigra pars compacta dopaminergic neurons. Multiple studies, however, describe prodromal, non-motor dysfunctions that affect the quality of life of patients who subsequently develop PD. These prodromal dysfunctions comprise a wide array of gastrointestinal motility disorders including dysphagia, delayed gastric emptying and chronic constipation. The histological hallmark of PD — misfolded α-synuclein aggregates that form Lewy bodies and neurites — is detected in the enteric nervous system prior to clinical diagnosis, suggesting that the gastrointestinal tract and its neural (vagal) connection to the central nervous system could have a major role in disease aetiology. This Review provides novel insights on the pathogenesis of PD, including gut-to-brain trafficking of α-synuclein as well as the newly discovered nigro–vagal pathway, and highlights how vagal connections from the gut could be the conduit by which ingested environmental pathogens enter the central nervous system and ultimately induce, or accelerate, PD progression. The pathogenic potential of various environmental neurotoxicants and the suitability and translational potential of experimental animal models of PD will be highlighted and appraised. Finally, the clinical manifestations of gastrointestinal involvement in PD and medications will be discussed briefly.Gastrointestinal dysfunction (including dysphagia and constipation) can occur in Parkinson disease (PD), with evidence that they can arise prior to diagnosis of PD. This Review describes new insights into the mechanisms and pathophysiology of the gastrointestinal involvement of PD, including clinical manifestations.
Journal Article
Guts : our digestive system
by
Simon, Seymour, author
in
Gastrointestinal system Juvenile literature.
,
Digestion Juvenile literature.
,
Gastrointestinal system.
2019
Provides a guide to the workings of the digestive system through a review of the organs, the digestive process, and detailed photos of the surface of the stomach.
Probiotics and prebiotics in intestinal health and disease: from biology to the clinic
by
Rastall, Robert A
,
Merenstein, Daniel J
,
Sanders, Mary Ellen
in
Breast milk
,
Digestive system
,
Gastrointestinal tract
2019
Probiotics and prebiotics are microbiota-management tools for improving host health. They target gastrointestinal effects via the gut, although direct application to other sites such as the oral cavity, vaginal tract and skin is being explored. Here, we describe gut-derived effects in humans. In the past decade, research on the gut microbiome has rapidly accumulated and has been accompanied by increased interest in probiotics and prebiotics as a means to modulate the gut microbiota. Given the importance of these approaches for public health, it is timely to reiterate factual and supporting information on their clinical application and use. In this Review, we discuss scientific evidence on probiotics and prebiotics, including mechanistic insights into health effects. Strains of Lactobacillus, Bifidobacterium and Saccharomyces have a long history of safe and effective use as probiotics, but Roseburia spp., Akkermansia spp., Propionibacterium spp. and Faecalibacterium spp. show promise for the future. For prebiotics, glucans and fructans are well proven, and evidence is building on the prebiotic effects of other substances (for example, oligomers of mannose, glucose, xylose, pectin, starches, human milk and polyphenols).
Journal Article