Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,153
result(s) for
"Gastrointestinal Microbiome - immunology"
Sort by:
Gut microbial bile and amino acid metabolism associate with peanut oral immunotherapy failure
2025
Peanut Oral Immunotherapy (POIT) holds promise for remission of peanut allergy, though treatment is protracted and successful in only a subset of patients. Because the gut microbiome has been linked to food allergy, we sought to identify fecal predictors of POIT efficacy and mechanistic insights into treatment response. Here, we conducted a secondary analysis of the IMPACT randomized, double-blind, placebo-controlled POIT trial (NCT01867671), using longitudinal fecal samples from 90 children, and performed 16S rRNA sequencing, shotgun metagenomics, and untargeted metabolomics. Integrated multi-omics analyses revealed a relationship between gut microbiome metabolic capacity and treatment outcomes. Five fecal bile acids present prior to treatment initiation predicted POIT efficacy (AUC 0.71). Treatment failure was associated with a specific bile acid profile, enhanced amino acid utilization, and higher copy number of the
ptpA
gene encoding a bacterial hydrolase that cleaves tripeptides containing proline residues – a feature of immunogenic peanut Ara h 2 proteins. In vitro, peanut-supplemented fecal cultures of children for whom POIT failed to induce remission evidenced reduced Ara h 2 concentrations. Thus, distal gut microbiome metabolism appears to contribute to POIT failure.
Peanut oral immunotherapy (POIT) can treat peanut allergy, but only a subset of patients achieve lasting remission. Here, the authors show that POIT efficacy is associated with the gut microbiome’s functional capacity, specifically bile and amino acid metabolism and protein degradation.
Journal Article
Effects of prebiotics on immunologic indicators and intestinal microbiota structure in perioperative colorectal cancer patients
•Prebiotic intake improved and changed immunologic indicators and intestinal microbiota structure in colorectal patients in the perioperative period.•Prebiotics increased the abundance of some commensal microbiota containing opportunistic pathogens in CRC patients.•Surgical stress decreased the abundance of most intestinal microbiota in the intestinal tract but increased the abundance of some opportunistic pathogens and commensals microbiota.•Bacteroides is a relevant bacteria for further research on the mechanism with prebiotics.
The aim of the present study was to investigate the effects of prebiotics (containing fructooligosaccharides, xylooligosaccharides, polydextrose, and resistant dextrin) intake on immune function and intestinal microbiota structure in perioperative patients with colorectal cancer (CRC).
A randomized, double-blind, no-treatment parallel control clinical trial involving 140 perioperative patients (90 men and 50 women, aged 40–75 y) with CRC was performed. Patients were randomly divided into two groups: an intervention group (prebiotic group, n = 70) that received prebiotic supplementation of 30 g/d for 7 d, and a control group (non-prebiotic group, n = 70) that received no prebiotic supplementation. The nutritional and immunologic indices were evaluated for both groups before and after operation and analyzed against baseline values. Moreover, fecal samples were collected from 40 patients randomly chosen from the two groups to study intestinal microbiota, which was analyzed by sequencing the V3–V4 region of 16S ribosomal DNA using the Illumina (San Diego, CA) MiSeq (PE 2 × 300 bp) platform.
Oral intake of prebiotics produced significant effects on immunologic indices in both the preoperative and postoperative periods, but the patterns of effects were different. In the preoperative period, prebiotics increased serum levels of immunoglobulin G (IgG; P = 0.02), IgM (P = 0.00), and transferrin (P = 0.027; all P < 0.05). In the postoperative period, enhanced levels of IgG (P = 0.003), IgA (P = 0.007), suppressor/cytotoxic T cells (CD3+CD8+; P = 0.043), and total B lymphocytes (CD19+; P = 0.012) were identified in the prebiotic group (all P < 0.05). The differences in the intestinal microbiota at the phylum level were not statistically significant between the intervention and control groups (P > 0.05). At the genus level, prebiotics increased the abundance of Bifidobacterium (P = 0.017) and Enterococcus (P = 0.02; both P < 0.05) but decreased the abundance of Bacteroides (P = 0.04) in the preoperative period (all P < 0.05). In the postoperative period, the abundance of Bacteroides (P = 0.04) was decreased, but the abundance of Enterococcus (P = 0.00), Bacillus (P = 0.01), Lactococcus (P = 0.00), and Streptococcus (P = 0.037) increased in the non-prebiotic group (all P < 0.05); however, no significant change was identified in the abundance of Enterococcus (P = 0.56), Lactococcus (P = 0.07), and Streptococcus (P = 0.56) as a result of prebiotic intervention in this period (all P > 0.05). The abundance of Escherichia-Shigella was increased after prebiotic intake in the postoperative period (P = 0.014, P < 0.05). There was a notable trend of decline in the abundance of intestinal microbiota from preoperative to postoperative in the non-prebiotic group.
Prebiotic intake is recommended to improve serum immunologic indicators in patients with CRC 7 d before operation. Prebiotics improved the abundance of four commensal microbiota containing opportunistic pathogens in patients with CRC. Surgical stress decreased the abundance of most intestinal microbiota in the intestinal tract but increased the abundance of some opportunistic pathogens and commensal microbiota. Bacteroides is a relevant bacterial species for further research on the mechanism of prebiotics.
Journal Article
The effects of prebiotics on microbial dysbiosis, butyrate production and immunity in HIV-infected subjects
2017
Altered interactions between the gut mucosa and bacteria during HIV infection seem to contribute to chronic immune dysfunction. A deeper understanding of how nutritional interventions could ameliorate gut dysbiosis is needed. Forty-four subjects, including 12 HIV+ viremic untreated (VU) patients, 23 antiretroviral therapy-treated (ART+) virally suppressed patients (15 immunological responders and 8 non-responders) and 9 HIV− controls (HIV−), were blindly randomized to receive either prebiotics (scGOS/lcFOS/glutamine) or placebo (34/10) over 6 weeks in this pilot study. We assessed fecal microbiota composition using deep 16S rRNA gene sequencing and several immunological and genetic markers involved in HIV immunopathogenesis. The short dietary supplementation attenuated HIV-associated dysbiosis, which was most apparent in VU individuals but less so in ART+ subjects, whose gut microbiota was found more resilient. This compositional shift was not observed in the placebo arm. Significantly, declines in indirect markers of bacterial translocation and T-cell activation, improvement of thymic output, and changes in butyrate production were observed. Increases in the abundance of Faecalibacterium and Lachnospira strongly correlated with moderate but significant increases of butyrate production and amelioration of the inflammatory biomarkers soluble CD14 and high-sensitivity C-reactive protein, especially among VU. Hence, the bacterial butyrate synthesis pathway holds promise as a viable target for interventions.
Journal Article
Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study
by
Lankelma, Jacqueline M
,
de Vos, Alex F
,
van der Poll, Tom
in
Adult
,
Animal models
,
Anti-Bacterial Agents - pharmacology
2017
ObjectiveThe gut microbiota is essential for the development of the intestinal immune system. Animal models have suggested that the gut microbiota also acts as a major modulator of systemic innate immunity during sepsis. Microbiota disruption by broad-spectrum antibiotics could thus have adverse effects on cellular responsiveness towards invading pathogens. As such, the use of antibiotics may attribute to immunosuppression as seen in sepsis. We aimed to test whether disruption of the gut microbiota affects systemic innate immune responses during endotoxemia in healthy subjects.DesignIn this proof-of-principle intervention trial, 16 healthy young men received either no treatment or broad-spectrum antibiotics (ciprofloxacin, vancomycin and metronidazole) for 7 days, after which all were administered lipopolysaccharide intravenously to induce a transient sepsis-like syndrome. At various time points, blood and faeces were sampled.ResultsGut microbiota diversity was significantly lowered by the antibiotic treatment in all subjects. Clinical parameters, neutrophil influx, cytokine production, coagulation activation and endothelial activation during endotoxemia were not different between antibiotic-pretreated and control individuals. Antibiotic treatment had no impact on blood leucocyte responsiveness to various Toll-like receptor ligands and clinically relevant causative agents of sepsis (Streptococcus pneumoniae, Klebsiella pneumoniae, Escherichia coli) during endotoxemia.ConclusionsThese findings suggest that gut microbiota disruption by broad-spectrum antibiotics does not affect systemic innate immune responses in healthy subjects during endotoxemia in humans, disproving our hypothesis. Further research is needed to test this hypothesis in critically ill patients. These data underline the importance of translating findings in mice to humans.Trial registration numberClinicalTrials.gov (NCT02127749; Pre-results).
Journal Article
Sustained Drug Treatment Alters the Gut Microbiota in Rheumatoid Arthritis
by
Mei, Liyan
,
Yang, Zhihua
,
Liu, Zehao
in
Adult
,
Arthritis, Rheumatoid - drug therapy
,
Arthritis, Rheumatoid - immunology
2021
Several studies have investigated the causative role of the microbiome in the development of rheumatoid arthritis (RA), but changes in the gut microbiome in RA patients during drug treatment have been less well studied. Here, we tracked the longitudinal changes in gut bacteria in 22 RA patients who were randomized into two groups and treated with Huayu-Qiangshen-Tongbi formula (HQT) plus methotrexate (MTX) or leflunomide (LEF) plus MTX. There were differences in the gut microbiome between untreated (at baseline) RA patients and healthy controls, with 37 species being more abundant in the RA patients and 21 species (including Clostridium celatum ) being less abundant. Regarding the functional analysis, vitamin K2 biosynthesis was associated with RA-enriched bacteria. Additionally, in RA patients, alterations in gut microbial species appeared to be associated with RA-related clinical indicators through changing various gut microbiome functional pathways. The clinical efficacy of the two treatments was further observed to be similar, but the response trends of RA-related clinical indices in the two treatment groups differed. For example, HQT treatment affected the erythrocyte sedimentation rate (ESR), while LEF treatment affected the C-reactive protein (CRP) level. Further, 11 species and 9 metabolic pathways significantly changed over time in the HQT group (including C. celatum , which increased), while only 4 species and 2 metabolic pathways significantly changed over time in the LEF group. In summary, we studied the alterations in the gut microbiome of RA patients being treated with HQT or LEF. The results provide useful information on the role of the gut microbiota in the pathogenesis of RA, and they also provide potentially effective directions for developing new RA treatments.
Journal Article
Early-life gut microbiome associates with positive vaccine take and shedding in neonatal schedule of the human neonatal rotavirus vaccine RV3-BB
2025
Rotavirus vaccines are less effective in high mortality regions. A rotavirus vaccine administered at birth may overcome challenges to vaccine uptake posed by a complex gut microbiome. We investigated the association between the microbiome and vaccine responses following RV3-BB vaccine (G3P[6]) administered in a neonatal schedule (dose 1: 0-5 days), or infant schedule (dose 1: 6-8 weeks) in Indonesia (Phase 2b efficacy study) (
n
= 478 samples/193 infants) (ACTRN12612001282875) and in Malawi (Immunigenicity study) (n = 355 samples/186 infants) (NCT03483116). Vaccine responses assessed using anti-rotavirus IgA seroconversion (IgA), stool shedding of vaccine virus and vaccine take (IgA seroconversion and/or shedding). Here we report, high alpha diversity, beta diversity differences and high abundance of
Bacteroides
is associated with positive vaccine take and shedding following RV3-BB administered in the neonatal schedule, but not with IgA seroconversion, or in the infant schedule. Higher alpha diversity was associated with shedding after three doses of RV3-BB in the neonatal schedule compared to non-shedders, or the placebo group. High abundance of
Streptococcus
and
Staphylococcus
is associated with no shedding in the neonatal schedule group. RV3-BB vaccine administered in a neonatal schedule modulates the early microbiome environment and presents a window of opportunity to optimise protection from rotavirus disease.
Here, the authors show that high alpha diversity, differences in beta diversity, and a high abundance of
Bacteroides
in the gut microbiome are associated with positive vaccine take and stool shedding following administration of RV3-BB vaccine in the neonatal schedule, but not in the infant schedule or placebo groups, suggesting that the early-life gut microbiome provides a gut environment that optimizes the potential for a positive vaccine response.
Journal Article
Diet and Immune Effects Trial (DIET)- a randomized, double-blinded dietary intervention study in patients with melanoma receiving immunotherapy
2024
Background
Gut microbiome modulation is a promising strategy for enhancing the response to immune checkpoint blockade (ICB). Fecal microbiota transplant studies have shown positive signals of improved outcomes in both ICB-naïve and refractory melanoma patients; however, this strategy is challenging to scale. Diet is a key determinant of the gut microbiota, and we have previously shown that (a) habitual high dietary fiber intake is associated with an improved response to ICB and (b) fiber manipulation in mice impacts antitumor immunity. We recently demonstrated the feasibility of a controlled high-fiber dietary intervention (HFDI) conducted in melanoma survivors with excellent compliance and tolerance. Building on this, we are now conducting a phase II randomized trial of HFDI versus a healthy control diet in melanoma patients receiving ICB.
Methods
This is a randomized, double-blind, fully controlled feeding study that will enroll 45 melanoma patients starting standard-of-care (SOC) ICB in three settings: adjuvant, neoadjuvant, and unresectable. Patients are randomized 2:1 to the HFDI (target fiber 50 g/day from whole foods) or healthy control diet (target fiber 20 g/day) stratified by BMI and cohort. All meals are prepared by the MD Anderson Bionutrition Core and are isocaloric and macronutrient-controlled. The intervention includes a 1-week equilibration period and then up to 11 weeks of diet intervention. Longitudinal blood, stool and tumor tissue (if available) are collected throughout the trial and at 12 weeks post intervention.
Discussion
This DIET study is the first fully controlled feeding study among cancer patients who are actively receiving immunotherapy. The goal of the current study is to establish the effects of dietary intervention on the structure and function of the gut microbiome in patients with melanoma treated with SOC immunotherapies. The secondary endpoints include changes in systemic and tumor immunity, changes in the metabolic profile, quality of life, symptoms, disease response and immunotherapy toxicity.
Trial registration
This protocol is registered with the U.S. National Institutes of Health trial registry, ClinicalTrials.gov, under the identifier NCT04645680. First posted 2020-11-27; last verified 2024-06.
Journal Article
Skin exposure to soil microbiota elicits changes in cell-mediated immunity to pneumococcal vaccine
2024
A resilient immune system is characterized by its capacity to respond appropriately to challenges, such as infections, and it is crucial in vaccine response. Here we report a paired randomized intervention-control trial in which we evaluated the effect of microbially rich soil on immune resilience and pneumococcal vaccine response. Twenty-five age and sex matched pairs of volunteers were randomized to intervention and control groups. The intervention group rubbed hands three times a day in microbially rich soil until participants received a pneumococcal vaccine on day 14. Vaccine response, skin and gut bacteriome and blood cytokine levels were analyzed on days 0, 14 and 35. Peripheral blood mononuclear cells (PBMCs) were stimulated with vaccine components and autoclaved soil for cytokine production. Commensal bacterial community shifted only in the intervention group during the 14-day intervention period. When PBMCs collected on day 14 before the vaccination were stimulated with the vaccine components, IFN-y production increased in the intervention but not in the control group. On day 35, vaccination induced a robust antibody response in both groups. In parallel, gut bacterial community was associated with TGF-β plasma levels and TGF-β decrease in plasma was lower in the intervention group. The results indicate that exposure to microbially rich soil can modulate the cell-mediated immunity to components in pneumococcal vaccine.
Journal Article
Increased gut hormones and insulin sensitivity index following a 3-d intervention with a barley kernel-based product: a randomised cross-over study in healthy middle-aged subjects
by
Nilsson, Anne C.
,
Björck, Inger M. E.
,
Johansson-Boll, Elin V.
in
absorption barrier
,
Aged
,
appetite
2015
Certain purified indigestible carbohydrates such as inulin have been shown to stimulate gut-derived hormones involved in glycaemic regulation and appetite regulation, and to counteract systemic inflammation through a gut microbiota-mediated mechanism. Less is known about the properties of indigestible carbohydrates intrinsic to food. The aim of this study was to investigate the possibility to affect release of endogenous gut hormones and ameliorate appetite control and glycaemic control by ingestion of a whole-grain cereal food product rich in NSP and resistant starch in healthy humans. In all, twenty middle-aged subjects were provided with a barley kernel-based bread (BB) or a reference white wheat bread during 3 consecutive days, respectively, in a randomised cross-over design study. At a standardised breakfast the following day (day 4), blood was collected for the analysis of blood (b) glucose regulation, gastrointestinal hormones, markers of inflammation and markers of colonic fermentation; 3 d of intervention with BB increased gut hormones in plasma (p) the next morning at fasting (p-glucagon-like peptide-1; 56 %) and postprandially (p-glucagon-like peptide-2; 13 % and p-peptide YY; 18 %). Breath H2 excretion and fasting serum (s) SCFA concentrations were increased (363 and 18 %, respectively), and b-glucose (22 %) and s-insulin responses (17 %) were decreased after BB intervention. Insulin sensitivity index (ISIcomposite) was also improved (25 %) after BB. In conclusion, 3 d of intervention with BB increased systemic levels of gut hormones involved in appetite regulation, metabolic control and maintenance of gut barrier function, as well as improved markers of glucose homoeostasis in middle-aged subjects, altogether relevant for the prevention of obesity and the metabolic syndrome.
Journal Article
Obesity and diet independently affect maternal immunity, maternal gut microbiota and pregnancy outcome in mice
2024
Maternal obesity poses risks for both mother and offspring during pregnancy, with underlying mechanisms remaining largely unexplored. Obesity is associated with microbial gut dysbiosis and low-grade inflammation, and also the diet has a major impact on these parameters. This study aimed to investigate how maternal obesity and diet contribute to changes in immune responses, exploring potential associations with gut microbiota dysbiosis and adverse pregnancy outcomes in mice.
Before mating, C57BL/6 mice were assigned to either a high-fat-diet (HFD) or low-fat-diet (LFD) to obtain obese (n=17) and lean (n=10) mice. To distinguish between the effects of obesity and diet, 7 obese mice were switched from the HFD to the LFD from day 7 until day 18 of pregnancy (\"switch group\"), which was the endpoint of the study. T helper (Th) cell subsets were studied in the spleen, mesenteric lymph nodes (MLN) and Peyer's patches (PP), while monocyte subsets and activation status were determined in maternal blood (flow cytometry). Feces were collected before and during pregnancy (day 7,14,18) for microbiota analysis (16S rRNA sequencing). Pregnancy outcome included determination of fetal and placental weight.
Obesity increased splenic Th1 and regulatory T cells, MLN Th1 and PP Th17 cells and enhanced IFN-γ and IL-17A production by splenic Th cells upon ex vivo stimulation. Switching diet decreased splenic and PP Th2 cells and classical monocytes, increased intermediate monocytes and activation of intermediate/nonclassical monocytes. Obesity and diet independently induced changes in the gut microbiota. Various bacterial genera were increased or decreased by obesity or the diet switch. These changes correlated with the immunological changes. Fetal weight was lower in the obese than the lean group, while placental weight was lower in the switch than the obese group.
This study demonstrates that obesity and diet independently impact peripheral and intestinal immune responses at the end of pregnancy. Simultaneously, both factors affect specific bacterial gut genera and lead to reduced fetal or placental weight. Our data suggest that switching diet during pregnancy to improve maternal health is not advisable and it supports pre/probiotic treatment of maternal obesity-induced gut dysbiosis to improve maternal immune responses and pregnancy outcome.
Journal Article