Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
855 result(s) for "Gastropoda - chemistry"
Sort by:
An ammonite trapped in Burmese amber
Amber is fossilized tree resin, and inclusions usually comprise terrestrial and, rarely, aquatic organisms. Marine fossils are extremely rare in Cretaceous and Cenozoic ambers. Here, we report a record of an ammonite with marine gastropods, intertidal isopods, and diverse terrestrial arthropods as syninclusions in mid-Cretaceous Burmese amber. We used X-ray–microcomputed tomography (CT) to obtain high-resolution 3D images of the ammonite, including its sutures, which are diagnostically important for ammonites. The ammonite is a juvenile Puzosia (Bhimaites) and provides supporting evidence for a Late Albian–Early Cenomanian age of the amber. There is a diverse assemblage (at least 40 individuals) of arthropods in this amber sample from both terrestrial and marine habitats, including Isopoda, Acari (mites), Araneae (spiders), Diplopoda (millipedes), and representatives of the insect orders Blattodea (cockroaches), Coleoptera (beetles), Diptera (true flies), and Hymenoptera (wasps). The incomplete preservation and lack of soft body of the ammonite and marine gastropods suggest that they were dead and underwent abrasion on the seashore before entombment. It is most likely that the resin fell to the beach from coastal trees, picking up terrestrial arthropods and beach shells and, exceptionally, surviving the high-energy beach environment to be preserved as amber. Our findings not only represent a record of an ammonite in amber but also provide insights into the taphonomy of amber and the paleoecology of Cretaceous amber forests.
Asian monsoons in a late Eocene greenhouse world
The strong present-day Asian monsoons are thought to have originated between 25 and 22 million years (Myr) ago, driven by Tibetan–Himalayan uplift. However, the existence of older Asian monsoons and their response to enhanced greenhouse conditions such as those in the Eocene period (55–34 Myr ago) are unknown because of the paucity of well-dated records. Here we show late Eocene climate records revealing marked monsoon-like patterns in rainfall and wind south and north of the Tibetan–Himalayan orogen. This is indicated by low oxygen isotope values with strong seasonality in gastropod shells and mammal teeth from Myanmar, and by aeolian dust deposition in northwest China. Our climate simulations support modern-like Eocene monsoonal rainfall and show that a reinforced hydrological cycle responding to enhanced greenhouse conditions counterbalanced the negative effect of lower Tibetan relief on precipitation. These strong monsoons later weakened with the global shift to icehouse conditions 34 Myr ago. Asian monsoons were strongly active 40 million years ago and were enhanced by high atmospheric CO 2 content. They were significantly weakened when CO 2 levels decreased 34 million years ago and then reinitiated several million years later. Monsoon conditions in a greenhouse world Asian monsoons were strongly active 40 million years ago and were enhanced by high atmospheric CO 2 content; however, they were significantly weakened when CO 2 levels decreased 34 million years ago and then reinitiated several million years later.
Nanotwin-governed toughening mechanism in hierarchically structured biological materials
As a natural biocomposite, Strombus gigas , commonly known as the giant pink queen conch shell, exhibits outstanding mechanical properties, especially a high fracture toughness. It is known that the basic building block of conch shell contains a high density of growth twins with average thickness of several nanometres, but their effects on the mechanical properties of the shell remain mysterious. Here we reveal a toughening mechanism governed by nanoscale twins in the conch shell. A combination of in situ fracture experiments inside a transmission electron microscope, large-scale atomistic simulations and finite element modelling show that the twin boundaries can effectively block crack propagation by inducing phase transformation and delocalization of deformation around the crack tip. This mechanism leads to an increase in fracture energy of the basic building block by one order of magnitude, and contributes significantly to that of the overall structure via structural hierarchy. As a natural biocomposite, Strombus gigas , commonly known as the giant pink queen conch shell, exhibits outstanding mechanical properties such as fracture toughness. Here, the authors show that these properties can be partially attributed to nanoscale twin boundaries in the basic building block of the shell.
An Ochered Fossil Marine Shell From the Mousterian of Fumane Cave, Italy
A scanty but varied ensemble of finds challenges the idea that Neandertal material culture was essentially static and did not include symbolic items. In this study we report on a fragmentary Miocene-Pliocene fossil marine shell, Aspamarginata, discovered in a Discoid Mousterian layer of the Fumane Cave, northern Italy, dated to at least 47.6-45.0 Cal ky BP. The shell was collected by Neandertals at a fossil exposure probably located more than 100 kms from the site. Microscopic analysis of the shell surface identifies clusters of striations on the inner lip. A dark red substance, trapped inside micropits produced by bioeroders, is interpreted as pigment that was homogeneously smeared on the outer shell surface. Dispersive X-ray and Raman analysis identify the pigment as pure hematite. Of the four hypotheses we considered to explain the presence of this object at the site, two (tool, pigment container) are discarded because in contradiction with observations. Although the other two (\"manuport\", personal ornament) are both possible, we favor the hypothesis that the object was modified and suspended by a 'thread' for visual display as a pendant. Together with contextual and chronometric data, our results support the hypothesis that deliberate transport and coloring of an exotic object, and perhaps its use as pendant, was a component of Neandertal symbolic culture, well before the earliest appearance of the anatomically modern humans in Europe.
Photosynthetic sea slugs induce protective changes to the light reactions of the chloroplasts they steal from algae
Sacoglossan sea slugs are able to maintain functional chloroplasts inside their own cells, and mechanisms that allow preservation of the chloroplasts are unknown. We found that the slug Elysia timida induces changes to the photosynthetic light reactions of the chloroplasts it steals from the alga Acetabularia acetabulum . Working with a large continuous laboratory culture of both the slugs (>500 individuals) and their prey algae, we show that the plastoquinone pool of slug chloroplasts remains oxidized, which can suppress reactive oxygen species formation. Slug chloroplasts also rapidly build up a strong proton-motive force upon a dark-to-light transition, which helps them to rapidly switch on photoprotective non-photochemical quenching of excitation energy. Finally, our results suggest that chloroplasts inside E. timida rely on oxygen-dependent electron sinks during rapid changes in light intensity. These photoprotective mechanisms are expected to contribute to the long-term functionality of the chloroplasts inside the slugs. Plants, algae and a few other organisms rely on a process known as photosynthesis to fuel themselves, as they can harness cellular structures called chloroplasts to convert light into usable energy. Animals typically lack chloroplasts, making them unable to use photosynthesis to power themselves. The sea slug Elysia timida , however, can steal whole chloroplasts from the cells of the algae it consumes: the stolen structures then become part of the cells in the gut of the slug, allowing the animal to gain energy from sunlight. Once they are in the digestive system of the slug, the chloroplasts survive and keep working for longer than expected. Indeed, these structures are often harmed as a side effect of photosynthesis, but the sea slug does not have the right genes to help repair this damage. In addition, conditions inside animal cells are widely different to the ones found inside algae and plants. It is not clear then how the sea slug extends the lifespan of its chloroplasts by preventing damage caused by sunlight. To investigate this question, Havurinne and Tyystjärvi compared photosynthesis in sea slugs and the algae they eat. A range of methods, including measuring fluorescence from the chloroplasts, was used: this revealed that the slug changes the inside of the stolen chloroplasts, making them more resistant to damage. First, when exposed to light the stolen chloroplasts can quickly switch on a mechanism that dissipates light energy to heat, which is less damaging. Second, a molecule that serves as an intermediate during photosynthesis is kept in a ‘safe’ state which prevents it from creating harmful compounds. And finally, additional safeguard molecules ‘deactivate’ compounds that could otherwise mediate damaging reactions. Overall, these measures may reduce the efficiency of the chloroplasts but allow them to keep working for much longer. Early chloroplasts were probably independent bacteria that were captured and ‘domesticated’ by other cells for their ability to extract energy from the sun. Photosynthesizing sea slugs therefore provide an interesting way to understand some of the challenges of early life. The work by Havurinne and Tyystjärvi may also reveal new ways to harness biological processes such as photosynthesis for energy production in other contexts.
Tough, Bio-Inspired Hybrid Materials
The notion of mimicking natural structures in the synthesis of new structural materials has generated enormous interest but has yielded few practical advances. Natural composites achieve strength and toughness through complex hierarchical designs that are extremely difficult to replicate synthetically. We emulate nature's toughening mechanisms by combining two ordinary compounds, aluminum oxide and polymethyl methacrylate, into ice-templated structures whose toughness can be more than 300 times (in energy terms) that of their constituents. The final product is a bulk hybrid ceramic-based material whose high yield strength and fracture toughness [~200 megapascals (MPa) and ~30 MPa·m¹/²] represent specific properties comparable to those of aluminum alloys. These model materials can be used to identify the key microstructural features that should guide the synthesis of bio-inspired ceramic-based composites with unique strength and toughness.
Inhibition of SARS-CoV-2 Virus Entry by the Crude Polysaccharides of Seaweeds and Abalone Viscera In Vitro
Much attention is being devoted to the potential of marine sulfated polysaccharides as antiviral agents in preventing COVID-19. In this study, sulfated fucoidan and crude polysaccharides, extracted from six seaweed species (Undaria pinnatifida sporophyll, Laminaria japonica, Hizikia fusiforme, Sargassum horneri, Codium fragile, Porphyra tenera) and Haliotis discus hannai (abalone viscera), were screened for their inhibitory activity against SARS-CoV-2 virus entry. Most of them showed significant antiviral activities at an IC50 of 12~289 μg/mL against SARS-CoV-2 pseudovirus in HEK293/ACE2, except for P. tenera (IC50 > 1000 μg/mL). The crude polysaccharide of S. horneri showed the strongest antiviral activity, with an IC50 of 12 μg/mL, to prevent COVID-19 entry, and abalone viscera and H. fusiforme could also inhibit SARS-CoV-2 infection with an IC50 of 33 μg/mL and 47 μg/mL, respectively. The common properties of these crude polysaccharides, which have strong antiviral activity, are high molecular weight (>800 kDa), high total carbohydrate (62.7~99.1%), high fucose content (37.3~66.2%), and highly branched polysaccharides. These results indicated that the crude polysaccharides from seaweeds and abalone viscera can effectively inhibit SARS-CoV-2 entry.
Microstructures in relation to temperature-induced aragonite-to-calcite transformation in the marine gastropod Phorcus turbinatus
Mollusk shells represent important archives for paleoclimatic studies aiming to reconstruct environmental conditions at high temporal resolution. However, the shells, made of calcium carbonate in the form of aragonite and /or calcite, can be altered through time which may undermine the suitability for any reconstruction based on geochemical proxies (i.e., stable isotopes, radiocarbon). At present, the diagenetic processes involved in this chemical and physical deterioration are still poorly understood. The present study aims to shed light on the onset and development of diagenetic alteration in the aragonitic shell of Phorcus turbinatus. To artificially mimic diagenesis, shells of P. turbinatus were exposed to elevated temperatures. The transformation of the mineral phase was monitored by means of Confocal Raman Microscopy whereas the structural changes were investigated using Scanning Electron Microscopy and Atomic Force Microscopy. The results indicate that the two distinct shell layers (prismatic layer and nacre) respond differently to the elevated temperatures, suggesting that the different microstructural organization and organic content may drive the onset and spread of the aragonite-to-calcite transformation. Furthermore, changes in the microstructural arrangement became visible prior to the mineralogical transition. Our results demonstrate that the specific physico-chemical characteristics of structurally different areas within the biogenic carbonates have to be taken into account when studying the phase transformation occurring during diagenesis.
A chronological framework for the British Quaternary based on Bithynia opercula
Dating the quaternary The British Quaternary, spanning roughly the past 2.6 million years, is unmatched for the biodiversity and abundance of its fossil localities and its record of climatic contrasts. However, with all but the most recent deposits beyond radiocarbon range, and with no readily datable volcanic rocks, it has been difficult to get accurate dates for many British Pleistocene deposits. Penkman et al . have developed new analytical methods based on the intra-crystalline proteins of stable biominerals (in the 'opercula' shell closure of the freshwater gastropod Bithynia ), common in Quaternary deposits. They obtain confident assignments for various strata to global marine isotope stages, securely placing Britain's rich record of faunal and archaeological change into a broader context. Marine and ice-core records show that the Earth has experienced a succession of glacials and interglacials during the Quaternary (last ∼2.6 million years), although it is often difficult to correlate fragmentary terrestrial records with specific cycles. Aminostratigraphy is a method potentially able to link terrestrial sequences to the marine isotope stages (MIS) of the deep-sea record 1 , 2 . We have used new methods of extraction and analysis of amino acids, preserved within the calcitic opercula of the freshwater gastropod Bithynia , to provide the most comprehensive data set for the British Pleistocene based on a single dating technique. A total of 470 opercula from 74 sites spanning the entire Quaternary are ranked in order of relative age based on the extent of protein degradation, using aspartic acid/asparagine (Asx), glutamic acid/glutamine (Glx), serine (Ser), alanine (Ala) and valine (Val). This new aminostratigraphy is consistent with the stratigraphical relationships of stratotypes, sites with independent geochronology, biostratigraphy and terrace stratigraphy 3 , 4 , 5 , 6 . The method corroborates the existence of four interglacial stages between the Anglian (MIS 12) and the Holocene in the terrestrial succession. It establishes human occupation of Britain in most interglacial stages after MIS 15, but supports the notion of human absence during the Last Interglacial (MIS 5e) 7 . Suspicions that the treeless ‘optimum of the Upton Warren interstadial’ at Isleworth pre-dates MIS 3 are confirmed. This new aminostratigraphy provides a robust framework against which climatic, biostratigraphical and archaeological models can be tested.
Localization and Bioreactivity of Cysteine-Rich Secretions in the Marine Gastropod Nucella lapillus
Marine biodiversity has been yielding promising novel bioproducts from venomous animals. Despite the auspices of conotoxins, which originated the paradigmatic painkiller Prialt, the biotechnological potential of gastropod venoms remains to be explored. Marine bioprospecting is expanding towards temperate species like the dogwhelk Nucella lapillus, which is suspected to secrete immobilizing agents through its salivary glands with a relaxing effect on the musculature of its preferential prey, Mytilus sp. This work focused on detecting, localizing, and testing the bioreactivity of cysteine-rich proteins and peptides, whose presence is a signature of animal venoms and poisons. The highest content of thiols was found in crude protein extracts from the digestive gland, which is associated with digestion, followed by the peribuccal mass, where the salivary glands are located. Conversely, the foot and siphon (which the gastropod uses for feeding) are not the main organs involved in toxin secretion. Ex vivo bioassays with Mytilus gill tissue disclosed the differential bioreactivity of crude protein extracts. Secretions from the digestive gland and peribuccal mass caused the most significant molecular damage, with evidence for the induction of apoptosis. These early findings indicate that salivary glands are a promising target for the extraction and characterization of bioactive cysteine-rich proteinaceous toxins from the species.