Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Language
    • Place of Publication
    • Location
7,761 result(s) for "Gateways"
Sort by:
A blockchain-based smart home gateway architecture for preventing data forgery
With the advancement of Information and Communication Technology (ICT) and the proliferation of sensor technologies, the Internet of Things (IoT) is now being widely used in smart home for the purposes of efficient resource management and pervasive sensing. In smart homes, various IoT devices are connected to each other, and these connections are centered on gateways. The role of gateways in the smart homes is significant, however, its centralized structure presents multiple security vulnerabilities such as integrity, certification, and availability. To address these security vulnerabilities, in this paper, we propose a blockchain-based smart home gateway network that counters possible attacks on the gateway of smart homes. The network consists of three layers including device, gateway, and cloud layers. The blockchain technology is employed at the gateway layer wherein data is stored and exchanged in the form blocks of blockchain to support decentralization and overcome the problem from traditional centralized architecture. The blockchain ensures the integrity of the data inside and outside of the smart home and provides availability through authentication and efficient communication between network members. We implemented the proposed network on the Ethereum blockchain technology and evaluated in terms of standard security measures including security response time and accuracy. The evaluation results demonstrate that the proposed security solutions outperforms over the existing solutions.
Management of API Gateway Based on Micro-service Architecture
Micro-services are activities that run in your own programs and communicate with HTTP APIS through lightweight devices. Under the Micro-service architecture, the API gateway is an important component of the overall architecture. It abstracts the common functions that are needed in the Micro-services. As the only entry for a Micro-service, the API gateway encapsulates the specific internal implementation and interface of the system. Based on the analysis and comparison of the traditional framework and the Micro-service framework, this paper mainly analyzes the realization of the functions: load balancing, automatic service blowing, and Gray release, and gives the implement scheme of the key technology of the API gateway under the Micro-service architecture. The scheme discusses the case study of the technology selection and application architecture under micro service. And it also provides a new solution for the difficulties in manage API gateway under micro service by giving a detailed design for the authentication of the API gateway, reverse proxy function and flow control function. By using API gateway, the problem of how a caller can call an independent service can be solved, thus the development efficiency can be greatly improved.
Modular gateway-ness connectivity and structural core organization in maritime network science
Around 80% of global trade by volume is transported by sea, and thus the maritime transportation system is fundamental to the world economy. To better exploit new international shipping routes, we need to understand the current ones and their complex systems association with international trade. We investigate the structure of the global liner shipping network (GLSN), finding it is an economic small-world network with a trade-off between high transportation efficiency and low wiring cost. To enhance understanding of this trade-off, we examine the modular segregation of the GLSN; we study provincial-, connector-hub ports and propose the definition of gateway-hub ports, using three respective structural measures. The gateway-hub structural-core organization seems a salient property of the GLSN, which proves importantly associated to network integration and function in realizing the cargo transportation of international trade. This finding offers new insights into the GLSN’s structural organization complexity and its relevance to international trade. It is crucial to understand the evolving structure of global liner shipping system. Here the authors unveiled the architecture of a recent global liner shipping network (GLSN) and show that the structure of global liner shipping system has evolved to be self-organized with a trade-off between high transportation efficiency and low wiring cost and ports’ gateway-ness is most highly associated with ports’ economic performance.
Realguard: A Lightweight Network Intrusion Detection System for IoT Gateways
Cyber security has become increasingly challenging due to the proliferation of the Internet of things (IoT), where a massive number of tiny, smart devices push trillion bytes of data to the Internet. However, these devices possess various security flaws resulting from the lack of defense mechanisms and hardware security support, therefore making them vulnerable to cyber attacks. In addition, IoT gateways provide very limited security features to detect such threats, especially the absence of intrusion detection methods powered by deep learning. Indeed, deep learning models require high computational power that exceeds the capacity of these gateways. In this paper, we introduce Realguard, an DNN-based network intrusion detection system (NIDS) directly operated on local gateways to protect IoT devices within the network. The superiority of our proposal is that it can accurately detect multiple cyber attacks in real time with a small computational footprint. This is achieved by a lightweight feature extraction mechanism and an efficient attack detection model powered by deep neural networks. Our evaluations on practical datasets indicate that Realguard could detect ten types of attacks (e.g., port scan, Botnet, and FTP-Patator) in real time with an average accuracy of 99.57%, whereas the best of our competitors is 98.85%. Furthermore, our proposal effectively operates on resource-constraint gateways (Raspberry PI) at a high packet processing rate reported about 10.600 packets per second.
A Cloud-Based Internet of Things Platform for Ambient Assisted Living
A common feature of ambient intelligence is that many objects are inter-connected and act in unison, which is also a challenge in the Internet of Things. There has been a shift in research towards integrating both concepts, considering the Internet of Things as representing the future of computing and communications. However, the efficient combination and management of heterogeneous things or devices in the ambient intelligence domain is still a tedious task, and it presents crucial challenges. Therefore, to appropriately manage the inter-connection of diverse devices in these systems requires: (1) specifying and efficiently implementing the devices (e.g., as services); (2) handling and verifying their heterogeneity and composition; and (3) standardizing and managing their data, so as to tackle large numbers of systems together, avoiding standalone applications on local servers. To overcome these challenges, this paper proposes a platform to manage the integration and behavior-aware orchestration of heterogeneous devices as services, stored and accessed via the cloud, with the following contributions: (i) we describe a lightweight model to specify the behavior of devices, to determine the order of the sequence of exchanged messages during the composition of devices; (ii) we define a common architecture using a service-oriented standard environment, to integrate heterogeneous devices by means of their interfaces, via a gateway, and to orchestrate them according to their behavior; (iii) we design a framework based on cloud computing technology, connecting the gateway in charge of acquiring the data from the devices with a cloud platform, to remotely access and monitor the data at run-time and react to emergency situations; and (iv) we implement and generate a novel cloud-based IoT platform of behavior-aware devices as services for ambient intelligence systems, validating the whole approach in real scenarios related to a specific ambient assisted living application.
Performance Evaluation of Attribute-Based Encryption in Automotive Embedded Platform for Secure Software Over-The-Air Update
This paper aims to show that it is possible to improve security for over the air update functionalities in an automotive scenario through the use of a cryptographic scheme, called “Attribute-Based-Encryption” (ABE), which grants confidentiality to the software/firmware update done Over The Air (OTA). We demonstrate that ABE is seamlessly integrable into the state of the art solutions regarding the OTA update by showing that the overhead of the ABE integration in terms of computation time and its storage is negligible w.r.t. the other overheads that are introduced by the OTA process, also proving that security can be enhanced with a minimum cost. In order to support our claim, we report the experimental results of an implementation of the proposed ABE OTA technique on a Xilinx ZCU102 evaluation board, which is an automotive-oriented HW/SW platform that is equipped with a Zynq UltraScale+ MPSoC chip that is representative of the computing capability of real automotive Electronic Control Units (ECUs).
Enhancing Bidirectional Modbus TCP ↔ RTU Gateway Performance: A UDP Mechanism and Markov Chain Approach
In the Industrial Internet of Things (IIoT) field, the diversity of devices and protocols leads to interconnection challenges. Conventional Modbus Transmission Control Protocol (TCP) to Remote Terminal Unit (RTU) gateways suffer from high overhead and latency of the TCP protocol stack. To enhance real-time communication while ensuring reliability, this study applies Markov chain theory to analyze User Datagram Protocol (UDP) transmission characteristics. An Advanced UDP (AUDP) protocol is proposed by integrating a Cyclic Redundancy Check (CRC) check mechanism, retransmission mechanism, Transaction ID matching mechanism, and exponential backoff mechanism at the UDP application layer. Based on AUDP, a Modbus AUDP-RTU gateway is designed with a lightweight architecture to achieve bidirectional conversion between Modbus AUDP and Modbus RTU. Experimental validation and Markov chain-based modeling demonstrate that the proposed gateway significantly reduces communication latency compared to Modbus TCP-RTU and exhibits higher reliability than Modbus UDP-RTU.
Security at the Edge for Resource-Limited IoT Devices
The Internet of Things (IoT) is rapidly growing, with an estimated 14.4 billion active endpoints in 2022 and a forecast of approximately 30 billion connected devices by 2027. This proliferation of IoT devices has come with significant security challenges, including intrinsic security vulnerabilities, limited computing power, and the absence of timely security updates. Attacks leveraging such shortcomings could lead to severe consequences, including data breaches and potential disruptions to critical infrastructures. In response to these challenges, this research paper presents the IoT Proxy, a modular component designed to create a more resilient and secure IoT environment, especially in resource-limited scenarios. The core idea behind the IoT Proxy is to externalize security-related aspects of IoT devices by channeling their traffic through a secure network gateway equipped with different Virtual Network Security Functions (VNSFs). Our solution includes a Virtual Private Network (VPN) terminator and an Intrusion Prevention System (IPS) that uses a machine learning-based technique called oblivious authentication to identify connected devices. The IoT Proxy’s modular, scalable, and externalized security approach creates a more resilient and secure IoT environment, especially for resource-limited IoT devices. The promising experimental results from laboratory testing demonstrate the suitability of IoT Proxy to secure real-world IoT ecosystems.
Design and Experiment of Satellite-Terrestrial Integrated Gateway with Dynamic Traffic Steering Capabilities for Maritime Communication
This study presents the architectural design and implementation of a multi-RAT gateway (MRGW) supporting dual satellite and terrestrial connectivity that enables moving maritime vessels, such as autonomous surface ships, to be connected to multiple radio access networks in the maritime communication environment. We developed an MRGW combining LTE and very-small-aperture terminal (VSAT) access networks to realize access traffic steering, switching, and splitting functionalities between them. In addition, we developed communication interfaces between the MRGW and end-devices connecting to their corresponding radio access networks, as well as between the MRGW and the digital bridge system of an autonomous surface ship, enabling the MRGW to collect wireless channel information from each RAT end-device and provide the collected data to the digital bridge system to determine the optimal navigation route for the autonomous surface ship. Experiments on the MRGW with LTE and VSAT end-devices are conducted at sea near Ulsan city and the Kumsan satellite service center in Korea. Through validation experiments on a real maritime communication testbed, we demonstrate the feasibility of future maritime communication technologies capable of providing the minimum performance necessary for autonomous surface ships or digitized aids to navigation (A to N) systems.