Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
222 result(s) for "Gatifloxacin"
Sort by:
Integrated virtual screening and MD simulation study to discover potential inhibitors of mycobacterial electron transfer flavoprotein oxidoreductase
Tuberculosis (TB) continues to be a major global health burden, with high incidence and mortality rates, compounded by the emergence and spread of drug-resistant strains. The limitations of current TB medications and the urgent need for new drugs targeting drug-resistant strains, particularly multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB, underscore the pressing demand for innovative anti-TB drugs that can shorten treatment duration. This has led to a focus on targeting energy metabolism of Mycobacterium tuberculosis (Mtb) as a promising approach for drug discovery. This study focused on repurposing drugs against the crucial mycobacterial protein, electron transfer flavoprotein oxidoreductase (EtfD), integral to utilizing fatty acids and cholesterol as a carbon source during infection. The research adopted an integrative approach, starting with virtual screening of approved drugs from the ZINC20 database against EtfD, followed by molecular docking, and concluding with molecular dynamics (MD) simulations. Diacerein, levonadifloxacin, and gatifloxacin were identified as promising candidates for repurposing against TB based on their strong binding affinity, stability, and interactions with EtfD. ADMET analysis and anti-TB sensitivity predictions assessed their pharmacokinetic and therapeutic potential. Diacerein and levonadifloxacin, previously unexplored in anti-tuberculous therapy, along with gatifloxacin, known for its efficacy in drug-resistant TB, have broad-spectrum antimicrobial properties and favorable pharmacokinetic profiles, suggesting potential as alternatives to current TB treatments, especially against resistant strains. This study underscores the efficacy of computational drug repurposing, highlighting bacterial energy metabolism and lipid catabolism as fruitful targets. Further research is necessary to validate the clinical suitability and efficacy of diacerein, levonadifloxacin, and gatifloxacin, potentially enhancing the arsenal against global TB.
Ultrasound-assisted gatifloxacin delivery in mouse cornea, in vivo
Gatifloxacin is a 4th generation fluoroquinolone antibiotic used in the clinic to treat ocular infection. One limitation of gatifloxacin is its relatively poor corneal penetration, and the increase of its trans-corneal delivery would be beneficial to reduce the amount or frequency of daily dose. In this study, ultrasound treatment was applied to enhance the trans-corneal delivery of gatifloxacin without damage. Experiments were conducted on mouse eyes in ex vivo and in vivo conditions. Ultrasound waves with 1 MHz in frequency, 1.3 W/cm 2 in intensity were applied onto the mouse cornea for 5 minutes, and then gatifloxacin ophthalmic solution was instilled and left there for 10 minutes. 3D gatifloxacin distribution in the cornea was measured by two-photon microscopy (TPM) imaging based on its intrinsic fluorescence. Longitudinal TPM imaging of ultrasound treated mouse corneas showed the increase of initial gatifloxacin intensities on the corneal surface compared to untreated mouse corneas by 67%, and then the increased gatifloxacin delivery into the cornea from the surface at later time. The delivered gatifloxacin in the corneal epithelium stayed longer in the ultrasound treated corneas than in the untreated corneas. The enhanced trans-corneal delivery and extended stay of gatifloxacin in the mouse cornea by ultrasound treatment could be beneficial for therapeutic effects. This study demonstrated the detail process of enhanced trans-corneal gatifloxacin delivery by ultrasound treatment.
Association between initiation of fluoroquinolones and hospital admission or emergency department visit for suicidality: population based cohort study
AbstractObjectiveTo evaluate the association between initiation of fluoroquinolones and hospital admission or emergency department visit for suicidality.DesignPopulation based cohort study.SettingIBM MarketScan database, USA.Participants2 756 268 adults (≥18 years) who initiated an oral fluoroquinolone (ciprofloxacin, levofloxacin, moxifloxacin, gemifloxacin, ofloxacin, gatifloxacin, norfloxacin, lomefloxacin, besifloxacin) or comparator antibiotic (January 2003 to September 2015) and had at least six months of continuous health plan enrollment and a diagnosis of pneumonia or urinary tract infection (UTI) three days or less before the drug initiation date. Comparator antibiotics were azithromycin in the pneumonia cohort and trimethoprim-sulfamethoxazole in the UTI cohort. Participants were matched 1:1 within each cohort on a propensity score, calculated from a multivariable logistic regression model that included 57 baseline covariates.Main outcomes measurePrimary outcome was hospital admission or emergency department visit for suicidal ideation or self-harm within 60 days after treatment initiation. Cox proportional hazard models were used to estimate hazard ratios and 95% confidence intervals.ResultsThe pneumonia cohort included 551 042 individuals, and the UTI cohort included 2 205 526 individuals. During the 60 day follow-up, 181 events were observed in the pneumonia cohort and 966 in the UTI cohort. The adjusted hazard ratios for fluoroquinolones were 1.01 (95% confidence interval 0.76 to 1.36) versus azithromycin in the pneumonia cohort and 1.03 (0.91 to 1.17) versus trimethoprim-sulfamethoxazole in the UTI cohort. Results were consistent across sensitivity analyses and subgroups of sex, age, or history of mental illnesses.ConclusionInitiation of fluoroquinolones was not associated with a substantially increased risk of admission to hospital or emergency department visits for suicidality compared with azithromycin or trimethoprim-sulfamethoxazole.
A Four-Month Gatifloxacin-Containing Regimen for Treating Tuberculosis
Shortening treatment regimens for tuberculosis may help control the disease. In this trial, patients with tuberculosis in sub-Saharan Africa received either a 4-month gatifloxacin-based regimen or the standard 6-month regimen. The gatifloxacin regimen was less effective. Shortened antituberculosis treatment regimens are expected to improve patient adherence to treatment, thus favoring better case management and disease control and minimizing the risk of drug resistance. 1 – 3 The first indication that fluoroquinolones had the potential to shorten tuberculosis treatment was from an observational study in India 4 in which ethambutol was replaced with ofloxacin. The fourth-generation fluoroquinolones gatifloxacin and moxifloxacin have shown mycobactericidal activity that is better than that of ofloxacin in vitro 5 and in vivo, 6 – 9 and these agents have the potential to shorten treatment. Gatifloxacin was chosen for this study on the basis of its bactericidal-activity profile, cost, . . .
Dissipation Dynamics of Doxycycline and Gatifloxacin and Accumulation of Heavy Metals during Broiler Manure Aerobic Composting
In this study, broilers were fed with heavy-metal-containing diets (Zn, Cu, Pb, Cr, As, Hg) at three rates (T1: 5 kg premix/ton feed, T2: 10 kg premix/ton feed and T3: 15 kg premix/ton feed) and Doxycycline (DOX) and Gatifloxacin (GAT) at low or high doses (T4: 31.2 mg DOX/bird/day and 78 mg GAT/bird/day, T5: 15.6 mg DOX/bird/day and 48 mg GAT/bird/day) to assess the accumulation of various heavy metals and the fate of two antibiotics in broiler manure after 35 days of aerobic composting. The results indicated that the two antibiotics changed quite differently during aerobic composting. About 14.96–15.84% of Doxycycline still remained at the end of composting, while Gatifloxacin was almost completely removed within 10 days of composting. The half-lives of Doxycycline were 13.75 and 15.86 days, while the half-lives of Gatifloxacin were only 1.32 and 1.38 days. Based on the Redundancy analysis (RDA), the concentration of antibiotics was significantly influenced by physico-chemical properties (mainly temperature and pH) throughout the composting process. Throughout the composting process, all heavy metal elements remained concentrated in organic fertilizer. In this study the Cr content reached 160.16 mg/kg, 223.98 mg/kg and 248.02 mg/kg with increasing premix feed rates, similar to Zn, which reached 258.2 mg/kg, 312.21 mg/kg and 333.68 mg/kg. Zn and Cr concentrations well exceeded the United States and the European soil requirements. This experiment showed that antibiotic residues and the accumulation of heavy metals may lead to soil contamination and pose a risk to the soil ecosystem.
The Role of Fluoroquinolones in the Treatment of Tuberculosis in 2019
The inability to use powerful antituberculosis drugs in an increasing number of patients seems to be the biggest threat towards global tuberculosis (TB) elimination. Simplified, shorter and preferably less toxic drug regimens are being investigated for pulmonary TB to counteract emergence of drug resistance. Intensified regimens with high-dose anti-TB drugs during the first weeks of treatment are being investigated for TB meningitis to increase the survival rate among these patients. Moxifloxacin, gatifloxacin and levofloxacin are seen as core agents in case of resistance or intolerance against first-line anti-TB drugs. However, based on their pharmacokinetics (PK) and pharmacodynamics (PD), these drugs are also promising for TB meningitis and might perhaps have the potential to shorten pulmonary TB treatment if dosing could be optimized. We prepared a comprehensive summary of clinical trials investigating the outcome of TB regimens based on moxifloxacin, gatifloxacin and levofloxacin in recent years. In the majority of clinical trials, treatment success was not in favour of these drugs compared to standard regimens. By discussing these results, we propose that incorporation of extended PK/PD analysis into the armamentarium of drug-development tools is needed to clarify the role of moxifloxacin, gatifloxacin and levofloxacin for TB, using the right dose. In addition, to prevent failure of treatment or emergence of drug-resistance, PK and PD variability advocates for concentration-guided dosing in patients at risk for too low a drug-exposure.
Fluoroquinolone heteroresistance in Mycobacterium tuberculosis: detection by genotypic and phenotypic assays in experimentally mixed populations
Heteroresistance - the simultaneous presence of drug-susceptible and -resistant organisms - is common in Mycobacterium tuberculosis . In this study, we aimed to determine the limit of detection (LOD) of genotypic assays to detect gatifloxacin-resistant mutants in experimentally mixed populations. A fluoroquinolone-susceptible M. tuberculosis mother strain (S) and its in vitro selected resistant daughter strain harbouring the D94G mutation in gyrA (R) were mixed at different ratio’s. Minimum inhibitory concentrations (MICs) against gatifloxacin were determined, while PCR-based techniques included: line probe assays (Genotype MTBDR sl and GenoScholar-FQ + KM TB II), Sanger sequencing and targeted deep sequencing. Droplet digital PCR was used as molecular reference method. A breakpoint concentration of 0.25 mg/L allows the phenotypic detection of ≥1% resistant bacilli, whereas at 0.5 mg/L ≥ 5% resistant bacilli are detected. Line probe assays detected ≥5% mutants. Sanger sequencing required the presence of around 15% mutant bacilli to be detected as (hetero) resistant, while targeted deep sequencing detected ≤1% mutants. Deep sequencing and phenotypic testing are the most sensitive methods for detection of fluoroquinolone-resistant minority populations, followed by line probe assays (provided that the mutation is confirmed by a mutation band), while Sanger sequencing proved to be the least sensitive method.
Magnetic covalent organic frameworks with core-shell structure as sorbents for solid phase extraction of fluoroquinolones, and their quantitation by HPLC
A core-shell structured magnetic covalent organic frameworks of the type Fe 3 O 4 @COFs was prepared by using the Fe 3 O 4 nanoparticles as magnetic core, and 4,4”-diamino-p-terphenyl and 1,3,5-tris(p-formylphenyl)benzene as two building blocks. The Fe 3 O 4 @COFs were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive spectrum, Fourier transform infrared spectroscopy, zeta potentiometric analysis, X-ray diffraction, vibrating sample magnetometry, thermogravimetric analysis and the nitrogen adsorption-desorption isotherms. The Fe 3 O 4 @COFs have core-shell structure with average diameter of 200 ± 2.4 nm, a high specific surface area (124 m 2 ·g -1 ), uniform pore size distribution (3.1 nm), good magnetic responsivity (36.8 emu·g -1 ), good thermal and chemical stability. They were applied as the sorbents for magnetic solid phase extraction (MSPE) for fluoroquinolones (FQs) ciprofloxacin, enrofloxacin, lomefloxacin, gatifloxacin, levofloxacin and pefloxacin. The effects of sorbent dosage, extraction time, p H value, ionic strength, desorption solvent and desorption time were investigated. By combining MSPE with HPLC-DAD analysis, a rapid and sensitive method was developed for the enrichment and determination of these FQs. The method had good linearity in the range of 2.5-1500 ng·g -1 FQ concentration range and low limits of detection (0.25-0.5 ng·g -1 ). The method was successfully applied to the extraction and determination of FQs in (spiked) pork, milk and human plasma samples. Recoveries ranged from 78.7-103.5% (with RSD<6.2%). Graphical abstract Schematic representation of the magnetic covalent organic frameworks which prepared by using the Fe 3 O 4 nanoparticles as magnetic core, 4,4”-diamino-p-terphenyl and 1,3,5-tris(p-formylphenyl)benzene as two building blocks. The Fe 3 O 4 @COFs were applied as adsorbents for magnetic solid phase extraction of six fluoroquinolones (FQs) and HPLC-DAD was applied to analysis the extraction efficiencies.
Clinical Ocular Exposure Extrapolation for Ophthalmic Solutions Using PBPK Modeling and Simulation
BackgroundThe development of generic ophthalmic drug products is challenging due to the complexity of the ocular system, and a lack of sensitive testing to evaluate the interplay of physiology with ophthalmic formulations. While measurements of drug concentration at the site of action in humans are typically sparse, these measurements are more easily obtained in rabbits. The purpose of this study is to demonstrate the utility of an ocular physiologically based pharmacokinetic (PBPK) model for translation of ocular exposure from rabbit to human.MethodThe Ocular Compartmental Absorption and Transit (OCAT™) model within GastroPlus® v9.8.2 was used to build PBPK models for levofloxacin (Lev), moxifloxacin (Mox), and gatifloxacin (Gat) ophthalmic solutions. in the rabbit eye. The models were subsequently used to predict Lev, Mox, and Gat exposure after ocular solution administrations in humans. Drug-specific parameters were used as fitted and validated in the rabbit OCAT model. The physiological parameters were scaled to match human ocular physiology.ResultsOCAT model simulations for rabbit well described the observed concentrations in the eye compartments following Lev, Mox, and Gat solution administrations of different doses and various administration schedules. The clinical ocular exposure following ocular administration of Lev, Mox, and Gat solutions at different doses and various administration schedules was well predicted.ConclusionEven though additional case studies for different types of active pharmaceutical ingredients (APIs) and formulations will be needed, the current study represents an important step in the validation of the extrapolation method to predict human ocular exposure for ophthalmic drug products using PBPK models.