نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      المصدر
    • اللغة
69,798 نتائج ل "Gene Expression Profiling"
صنف حسب:
Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis
Analyses of microRNA expression profiles have shown that many microRNAs are expressed aberrantly and correlate with tumorigenesis, progression, and prognosis of various haematological and solid tumours. We aimed to assess the relation between microRNA expression and progression and prognosis of gastric cancer. 353 gastric samples from two independent subsets of patients from Japan were analysed by microRNA microarray. MicroRNA expression patterns were compared between non-tumour mucosa and cancer samples, graded by diffuse and intestinal histological types and by progression-related factors (eg, depth of invasion, metastasis, and stage). Disease outcome was calculated by multivariable regression analysis to establish whether microRNAs are independent prognostic factors. In 160 paired samples of non-tumour mucosa and cancer, 22 microRNAs were upregulated and 13 were downregulated in gastric cancer; 292 (83%) samples were distinguished correctly by this signature. The two histological subtypes of gastric cancer showed different microRNA signatures: eight microRNAs were upregulated in diffuse-type and four in intestinal-type cancer. In the progression-related signature, miR-125b, miR-199a, and miR-100 were the most important microRNAs involved. Low expression of let-7g (hazard ratio 2·6 [95% CI 1·3–4·9]) and miR-433 (2·1 [1·1–3·9]) and high expression of miR-214 (2·4 [1·2–4·5]) were associated with unfavourable outcome in overall survival independent of clinical covariates, including depth of invasion, lymph-node metastasis, and stage. MicroRNAs are expressed differentially in gastric cancers, and histological subtypes are characterised by specific microRNA signatures. Unique microRNAs are associated with progression and prognosis of gastric cancer. National Cancer Institute.
Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics
Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2 , TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2 , TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2 , TMPRSS2 and CTSL . Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2 + TMPRSS2 + cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial–macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention. An integrated analysis of over 100 single-cell and single-nucleus transcriptomics studies illustrates severe acute respiratory syndrome coronavirus 2 viral entry gene coexpression patterns across different human tissues, and shows association of age, smoking status and sex with viral entry gene expression in respiratory cell populations.
Development and applications of single-cell transcriptome analysis
Dissecting the relationship between genotype and phenotype is one of the central goals in developmental biology and medicine. Transcriptome analysis is a powerful strategy to connect genotype to phenotype of a cell. Here we review the history, progress, potential applications and future developments of single-cell transcriptome analysis. In combination with live cell imaging and lineage tracing, it will be possible to decipher the full gene expression network underlying physiological functions of individual cells in embryos and adults, and to study diseases.
Cell fixation and preservation for droplet-based single-cell transcriptomics
Background Recent developments in droplet-based microfluidics allow the transcriptional profiling of thousands of individual cells in a quantitative, highly parallel and cost-effective way. A critical, often limiting step is the preparation of cells in an unperturbed state, not altered by stress or ageing. Other challenges are rare cells that need to be collected over several days or samples prepared at different times or locations. Methods Here, we used chemical fixation to address these problems. Methanol fixation allowed us to stabilise and preserve dissociated cells for weeks without compromising single-cell RNA sequencing data. Results By using mixtures of fixed, cultured human and mouse cells, we first showed that individual transcriptomes could be confidently assigned to one of the two species. Single-cell gene expression from live and fixed samples correlated well with bulk mRNA-seq data. We then applied methanol fixation to transcriptionally profile primary cells from dissociated, complex tissues. Low RNA content cells from Drosophila embryos, as well as mouse hindbrain and cerebellum cells prepared by fluorescence-activated cell sorting, were successfully analysed after fixation, storage and single-cell droplet RNA-seq. We were able to identify diverse cell populations, including neuronal subtypes. As an additional resource, we provide 'dropbead', an R package for exploratory data analysis, visualization and filtering of Drop-seq data. Conclusions We expect that the availability of a simple cell fixation method will open up many new opportunities in diverse biological contexts to analyse transcriptional dynamics at single-cell resolution.
Spatial transcriptomics reveals substantial heterogeneity in triple-negative breast cancer with potential clinical implications
While triple-negative breast cancer (TNBC) is known to be heterogeneous at the genomic and transcriptomic levels, spatial information on tumor organization and cell composition is still lacking. Here, we investigate TNBC tumor architecture including its microenvironment using spatial transcriptomics on a series of 92 patients. We perform an in-depth characterization of tumor and stroma organization and composition using an integrative approach combining histomorphological and spatial transcriptomics. Furthermore, a detailed molecular characterization of tertiary lymphoid structures leads to identify a gene signature strongly associated to disease outcome and response to immunotherapy in several tumor types beyond TNBC. A stepwise clustering analysis identifies nine TNBC spatial archetypes, further validated in external datasets. Several spatial archetypes are associated with disease outcome and characterized by potentially actionable features. In this work, we provide a comprehensive insight into the complexity of TNBC ecosystem with potential clinical relevance, opening avenues for treatment tailoring including immunotherapy. Triple-negative breast cancer (TNBC) is a heterogenous disease with several molecular subtypes previously described. Here the authors perform a spatial transcriptomics analysis on a series of 92 patients, providing additional insights into the heterogeneity of TNBC, with implications for clinical outcomes and therapy.
Validation of Suitable Housekeeping Genes for the Normalization of mRNA Expression for Studying Tumor Acidosis
Similar to other types of cancer, acidification of tumor microenvironment is an important feature of osteosarcoma, and a major source of cellular stress that triggers cancer aggressiveness, drug resistance, and progression. Among the different effects of low extracellular pH on tumor cells, we have recently found that short-term exposure to acidosis strongly affects gene expression. This alteration might also occur for the most commonly used housekeeping genes (HKG), thereby causing erroneous interpretation of RT-qPCR data. On this basis, by using osteosarcoma cells cultured at different pH values, we aimed to identify the ideal HKG to be considered in studies on tumor-associated acidosis. We verified the stability of 15 commonly used HKG through five algorithms (NormFinder, geNorm, BestKeeper, ΔCT, coefficient of variation) and found that no universal HKG is suitable, since at least four HKG are necessary for proper normalization. Furthermore, according to the acceptable range of values, YWHAZ, GAPDH, GUSB, and 18S rRNA were the most stable reference genes at different pH. Our results will be helpful for future investigations focusing on the effect of altered microenvironment on cancer behavior, particularly on the effectiveness of anticancer therapies in acid conditions.
Reliable Gene Expression Analysis by Reverse Transcription-Quantitative PCR: Reporting and Minimizing the Uncertainty in Data Accuracy
Reverse transcription-quantitative PCR (RT-qPCR) has been widely adopted to measure differences in mRNA levels; however, biological and technical variation strongly affects the accuracy of the reported differences. RT-qPCR specialists have warned that, unless researchers minimize this variability, they may report inaccurate differences and draw incorrect biological conclusions. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines describe procedures for conducting and reporting RT-qPCR experiments. The MIQE guidelines enable others to judge the reliability of reported results; however, a recent literature survey found low adherence to these guidelines. Additionally, even experiments that use appropriate procedures remain subject to individual variation that statistical methods cannot correct. For example, since ideal reference genes do not exist, the widely used method of normalizing RT-qPCR data to reference genes generates background noise that affects the accuracy of measured changes in mRNA levels. However, current RT-qPCR data reporting styles ignore this source of variation. In this commentary, we direct researchers to appropriate procedures, outline a method to present the remaining uncertainty in data accuracy, and propose an intuitive way to select reference genes to minimize uncertainty. Reporting the uncertainty in data accuracy also serves for quality assessment, enabling researchers and peer reviewers to confidently evaluate the reliability of gene expression data.
The impact of the Oncotype Dx breast cancer assay in clinical practice: a systematic review and meta-analysis
The impact of the Oncotype Dx (ODX) breast cancer assay on adjuvant chemotherapy (ACT) treatment decisions has been evaluated in many previous studies. However, it can be difficult to interpret the collective findings, which were conducted in diverse settings with limited sample sizes. We conducted a systematic review and meta-analysis to synthesize the results and provide insights about ODX utility. Studies, identified from PubMed, Embase, ASCO, and SABCS, were included if patients had ER+, node −, early-stage breast cancer, reported use of ODX to inform actual ACT decisions. Information was summarized and pooled according to: (1) distribution of ODX recurrence scores (RS), (2) impact of ODX on ACT recommendations, (3) impact of ODX on ACT use, and (4) proportion of patients following the treatment suggested by the ODX RS. A total of 23 studies met inclusion criteria. The distribution of RS categories was 48.8 % low, 39.0 % intermediate, and 12.2 % high (21 studies, 4,156 patients). ODX changed the clinical-pathological ACT recommendation in 33.4 % of patients (8 studies, 1,437 patients). In patients receiving ODX, receipt of ACT were: 28.2 % overall, 5.8 % low, 37.4 % intermediate, and 83.4 % high. High RS patients were significantly more likely to follow the treatment suggested by ODX versus low RS patients RR: 1.07 (1.01–1.14). The pooled results are consistent with most individual studies to date. The increased proportion of intermediate scores relative to original estimates may have implications for the clinical utility and cost impacts of testing. In addition, low versus high RS patients were significantly more likely to follow the ODX results, suggesting a tendency toward less aggressive treatment, despite a high ODX RS. Finally, there was a lack of studies on the impact of ODX on ACT use versus standard approaches, suggesting that additional studies are warranted.
Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis
Gene transcripts with invariant abundance during development and in the face of environmental stimuli are essential reference points for accurate gene expression analyses, such as RNA gel-blot analysis or quantitative reverse transcription-polymerase chain reaction (PCR). An exceptionally large set of data from Affymetrix ATH1 whole-genome GeneChip studies provided the means to identify a new generation of reference genes with very stable expression levels in the model plant species Arabidopsis (Arabidopsis thaliana). Hundreds of Arabidopsis genes were found that outperform traditional reference genes in terms of expression stability throughout development and under a range of environmental conditions. Most of these were expressed at much lower levels than traditional reference genes, making them very suitable for normalization of gene expression over a wide range of transcript levels. Specific and efficient primers were developed for 22 genes and tested on a diverse set of 20 cDNA samples. Quantitative reverse transcription-PCR confirmed superior expression stability and lower absolute expression levels for many of these genes, including genes encoding a protein phosphatase 2A subunit, a coatomer subunit, and an ubiquitin-conjugating enzyme. The developed PCR primers or hybridization probes for the novel reference genes will enable better normalization and quantification of transcript levels in Arabidopsis in the future.
Gene signatures for cancer research: A 25-year retrospective and future avenues
Over the past two decades, extensive studies, particularly in cancer analysis through large datasets like The Cancer Genome Atlas (TCGA), have aimed at improving patient therapies and precision medicine. However, limited overlap and inconsistencies among gene signatures across different cohorts pose challenges. The dynamic nature of the transcriptome, encompassing diverse RNA species and functional complexities at gene and isoform levels, introduces intricacies, and current gene signatures face reproducibility issues due to the unique transcriptomic landscape of each patient. In this context, discrepancies arising from diverse sequencing technologies, data analysis algorithms, and software tools further hinder consistency. While careful experimental design, analytical strategies, and standardized protocols could enhance reproducibility, future prospects lie in multiomics data integration, machine learning techniques, open science practices, and collaborative efforts. Standardized metrics, quality control measures, and advancements in single-cell RNA-seq will contribute to unbiased gene signature identification. In this perspective article, we outline some thoughts and insights addressing challenges, standardized practices, and advanced methodologies enhancing the reliability of gene signatures in disease transcriptomic research.