Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
31,011 result(s) for "Gene Expression Regulation - immunology"
Sort by:
Distinctive roles of age, sex, and genetics in shaping transcriptional variation of human immune responses to microbial challenges
The contribution of host genetic and nongenetic factors to immunological differences in humans remains largely undefined. Here, we generated bacterial-, fungal-, and viral-induced immune transcriptional profiles in an age- and sex-balanced cohort of 1,000 healthy individuals and searched for the determinants of immune response variation. We found that age and sex affected the transcriptional response of most immune-related genes, with age effects being more stimulus-specific relative to sex effects, which were largely shared across conditions. Although specific cell populations mediated the effects of age and sex on gene expression, including CD8⁺ T cells for age and CD4⁺ T cells and monocytes for sex, we detected a direct effect of these intrinsic factors for the majority of immune genes. The mapping of expression quantitative trait loci (eQTLs) revealed that genetic factors had a stronger effect on immune gene regulation than age and sex, yet they affected a smaller number of genes. Importantly, we identified numerous genetic variants that manifested their regulatory effects exclusively on immune stimulation, including a Candida albicans-specific master regulator at the CR1 locus. These response eQTLs were enriched in disease-associated variants, particularly for autoimmune and inflammatory disorders, indicating that differences in disease risk may result from regulatory variants exerting their effects only in the presence of immune stress. Together, this study quantifies the respective effects of age, sex, genetics, and cellular heterogeneity on the interindividual variability of immune responses and constitutes a valuable resource for further exploration in the context of different infection risks or disease outcomes.
Gene activation precedes DNA demethylation in response to infection in human dendritic cells
DNA methylation is considered to be a relatively stable epigenetic mark. However, a growing body of evidence indicates that DNA methylation levels can change rapidly; for example, in innate immune cells facing an infectious agent. Nevertheless, the causal relationship between changes in DNA methylation and gene expression during infection remains to be elucidated. Here, we generated time-course data on DNA methylation, gene expression, and chromatin accessibility patterns during infection of human dendritic cells with Mycobacterium tuberculosis. We found that the immune response to infection is accompanied by active demethylation of thousands of CpG sites overlapping distal enhancer elements. However, virtually all changes in gene expression in response to infection occur before detectable changes in DNA methylation, indicating that the observed losses in methylation are a downstream consequence of transcriptional activation. Footprinting analysis revealed that immune-related transcription factors (TFs), such as NF-κB/Rel, are recruited to enhancer elements before the observed losses in methylation, suggesting that DNA demethylation is mediated by TF binding to cis-acting elements. Collectively, our results show that DNA demethylation plays a limited role to the establishment of the core regulatory program engaged upon infection.
Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells
Dengue, caused by dengue virus (DENV) infection, is a public health problem worldwide. Although DENV pathogenesis has not yet been fully elucidated, the inflammatory response is a hallmark feature in severe DENV infection. Although vitamin D (vitD) can promote the innate immune response against virus infection, no studies have evaluated the effects of vitD on DENV infection, dendritic cells (DCs), and inflammatory response regulation. This study aimed to assess the impact of oral vitD supplementation on DENV-2 infection, Toll-like receptor (TLR) expression, and both pro- and anti-inflammatory cytokine production in monocyte-derived DCs (MDDCs). To accomplish this, 20 healthy donors were randomly divided into two groups and received either 1000 or 4000 international units (IU)/day of vitD for 10 days. During pre- and post-vitD supplementation, peripheral blood samples were taken to obtain MDDCs, which were challenged with DENV-2. We found that MDDCs from donors who received 4000 IU/day of vitD were less susceptible to DENV-2 infection than MDDCs from donors who received 1000 IU/day of vitD. Moreover, these cells showed decreased mRNA expression of TLR3, 7, and 9; downregulation of IL-12/IL-8 production; and increased IL-10 secretion in response to DENV-2 infection. In conclusion, the administration of 4000 IU/day of vitD decreased DENV-2 infection. Our findings support a possible role of vitD in improving the innate immune response against DENV. However, further studies are necessary to determine the role of vitD on DENV replication and its innate immune response modulation in MDDCs.
Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: insights from the faSScinate clinical trial in systemic sclerosis
ObjectivesSkin fibrosis mediated by activated dermal fibroblasts is a hallmark of systemic sclerosis (SSc), especially in the subset of patients with diffuse disease. Transforming growth factor-beta (TGFβ) and interleukin-6 (IL-6) are key candidate mediators in SSc. Our aim was to elucidate the specific effect of IL-6 pathway blockade on the biology of SSc fibroblasts in vivo by using samples from a unique clinical experiment—the faSScinate study—in which patients with SSc were treated for 24 weeks with tocilizumab (TCZ), an IL-6 receptor-α inhibitor.MethodsWe analysed the molecular, functional and genomic characteristics of explant fibroblasts cultured from matched skin biopsy samples collected at baseline and at week 24 from 12 patients receiving placebo (n=6) or TCZ (n=6) and compared these with matched healthy control fibroblast strains.ResultsThe hallmark functional and molecular-activated phenotype was defined in SSc samples and was stable over 24 weeks in placebo-treated cases. RNA sequencing analysis robustly defined key dysregulated pathways likely to drive SSc fibroblast activation in vivo. Treatment with TCZ for 24 weeks profoundly altered the biological characteristics of explant dermal fibroblasts by normalising functional properties and reversing gene expression profiles dominated by TGFβ-regulated genes and molecular pathways.ConclusionsWe demonstrated the exceptional value of using explant dermal fibroblast cultures from a well-designed trial in SSc to provide a molecular framework linking IL-6 to key profibrotic pathways. The profound impact of IL-6R blockade on the activated fibroblast phenotype highlights the potential of IL-6 as a therapeutic target in SSc and other fibrotic diseases.Trial registration number NCT01532869; Post-results.
Dietary propionic acid enhances antibacterial and immunomodulatory effects of oxytetracycline on Nile tilapia, Oreochromis niloticus
This study was carried out to evaluate the potential antibacterial and immunomodulatory effects of the dietary acidifier propionic acid (PA) when given alone or in combination with oxytetracycline (OTC) on Nile tilapia ( Oreochromis niloticus ). Apparently healthy O. niloticus ( n =  240; 52 ± 3.75 g) were randomly allocated into four equal groups ( n =  60/group): control group fed a basal diet alone and the other three groups fed basal diets supplemented with either PA (200 mg /kg of diet, PA group) or OTC (500 mg/kg of diet, OTC group) alone or in combination (PA + OTC group). Each group was subdivided into two subgroups ( n =  30/subgroup, each subgroup had triplicate of 10 fish); subgroup (A) was used to evaluate the antibacterial effects with the aforementioned 2 weeks feeding regime, and subgroup (B) was used to evaluate the immunomodulatory effects against Aeromonas hydrophila infection with similar 2 weeks feeding regime. Among the four groups, PA + OTC group showed the highest significant ( p  < 0.0001) antibacterial activity as indicated by widest inhibition zones against A. hydrophila and lowest total gastrointestinal bacterial counts. Additionally, this group had the best immunomodulatory effect as noticed by a significant ( p  < 0.05) increase in total serum protein, globulin, IgM, phagocytic activity and index, lysosome activity, and significant ( p  < 0.05) upregulation in the expression levels of immunity-related genes ( MHC I, MHC IIA, MHC IIB, Tlr7, IgM heavy chain , TNFα , and IL1β ) in head-kidney. Notably, the combined dietary PA and OTC improved the hematological parameters and reduced the oxidative damage of hepatopancreas and head-kidney induced by OTC. This data suggests dietary PA as potential adjuvant to OTC in O. niloticus diets to get maximal antibacterial and immunomodulatory effects.
Study of the Integrated Immune Response Induced by an Inactivated EV71 Vaccine
Enterovirus 71 (EV71), a major causative agent of hand-foot-and-mouth disease (HFMD), causes outbreaks among children in the Asia-Pacific region. A vaccine is urgently needed. Based on successful pre-clinical work, phase I and II clinical trials of an inactivated EV71 vaccine, which included the participants of 288 and 660 respectively, have been conducted. In the present study, the immune response and the correlated modulation of gene expression in the peripheral blood mononuclear cells (PBMCs) of 30 infants (6 to 11 months) immunized with this vaccine or placebo and consented to join this study in the phase II clinical trial were analyzed. The results showed significantly greater neutralizing antibody and specific T cell responses in vaccine group after two inoculations on days 0 and 28. Additionally, more than 600 functional genes that were up- or down-regulated in PBMCs were identified by the microarray assay, and these genes included 68 genes associated with the immune response in vaccine group. These results emphasize the gene expression profile of the immune system in response to an inactivated EV71 vaccine in humans and confirmed that such an immune response was generated as the result of the positive mobilization of the immune system. Furthermore, the immune response was not accompanied by the development of a remarkable inflammatory response. NCT01391494 and NCT01512706.
IDO Expression in Cancer: Different Compartment, Different Functionality?
Indoleamine 2,3-dioxygenase 1 (IDO1) is a cytosolic haem-containing enzyme involved in the degradation of tryptophan to kynurenine. Although initially thought to be solely implicated in the modulation of innate immune responses during infection, subsequent discoveries demonstrated IDO1 as a mechanism of acquired immune tolerance. In cancer, IDO1 expression/activity has been observed in tumor cells as well as in the tumor-surrounding stroma, which is composed of endothelial cells, immune cells, fibroblasts, and mesenchymal cells. IDO1 expression/activity has also been reported in the peripheral blood. This manuscript reviews available data on IDO1 expression, mechanisms of its induction, and its function in cancer for each of these compartments. In-depth study of the biological function of IDO1 according to the expressing (tumor) cell can help to understand if and when IDO1 inhibition can play a role in cancer therapy.
APOBEC3B expression in breast cancer reflects cellular proliferation, while a deletion polymorphism is associated with immune activation
Genomic sequencing studies of breast and other cancers have identified patterns of mutations that have been attributed to the endogenous mutator activity of APOBEC3B (A3B), a member of the AID/APOBEC family of cytidine deaminases. A3B gene expression is increased in many cancers, but its upstream drivers remain undefined. Furthermore, there exists a common germ-line deletion polymorphism ( A3B ᵈᵉˡ), which has been associated with a paradoxical increase in breast cancer risk. To examine causes and consequences of A3B expression and its constitutive absence in breast cancer, we analyzed two large clinically annotated genomic datasets [The Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)]. We confirmed that A3B expression is associated with aggressive clinicopathologic characteristics and adverse outcomes and show that A3B expression is highly correlated with proliferative features (mitosis and cell cycle-related gene expression) in breast and 15 of 16 other solid tumor types. However, breast cancers arising in homozygous A3B ᵈᵉˡ individuals with A3B absent did not differ in these features, indicating that A3B expression is a reflection rather than a direct cause of increased proliferation. Using gene set enrichment analysis (GSEA), we detected a pattern of immune activation in A3B ᵈᵉˡ breast cancers, which seems to be related to hypermutation arising in A3B ᵈᵉˡ carriers. Together, these results provide an explanation for A3B overexpression and its prognostic effect, giving context to additional study of this mutator as a cancer biomarker or putative drug target. In addition, although immune features of A3B ᵈᵉˡ require additional study, these findings nominate the A3B ᵈᵉˡ polymorphism as a potential predictor for cancer immunotherapy. Significance Somatic mutagenesis is fundamental to the development and evolution of cancers. APOBEC3B (A3B) is a cellular deaminase, which is overexpressed in cancers and believed to be an important cause of cancer-associated mutations. The factors responsible for A3B up-regulation are unknown. Interestingly, a germ-line deletion polymorphism exists, such that a significant proportion of the global population does not express A3B protein. Using large human cancer datasets, we show that A3B expression is strongly associated with cellular proliferation. Furthermore, we identify a pattern of immune activation related to hypermutation in tumors arising in A3B deletion carriers suggesting that these patients could respond differently to immune-directed therapies. These results provide important context for the ongoing study of A3B as a therapeutic target or biomarker.
The effect of H1N1 vaccination on serum miRNA expression in children: A tale of caution for microRNA microarray studies
MicroRNAs (miRNAs) are a class of small regulatory RNAs around 21-25 nucleotides in length which govern many aspects of immunity including the host innate and adaptive responses to infection. RT-qPCR studies of select microRNAs show that vaccination alters the expression circulating microRNAs but the effect of vaccination on the global microRNA population (i.e. micronome) has never been studied. To describe vaccine associated changes in the expression of microRNAs 21 days after vaccination in children receiving a pandemic influenza (H1N1) vaccination. Serum samples were obtained from children aged 6 months to 12 years enrolled in an open label randomised control trial of two pandemic influenza (H1N1) vaccines, in which participants received either ASO3B adjuvanted split virion or a whole virion non-adjuvanted vaccine. MicroRNA expression was profiled in a discovery cohort of participants prior to, and 21 days after vaccination using an Agilent microarray platform. Findings were followed up by RT-qPCR in the original discovery cohort and then in a validation cohort of participants taken from the same study. 44 samples from 22 children were assayed in a discovery cohort. The microarray results revealed 19 microRNAs were differentially expressed after vaccination after adjustment for multiple testing. The microarray detected ubiquitous expression of several microRNAs which could not be validated by RT-qPCR, many of which have little evidence of existence in publicly available RNA sequencing data. Real time PCR (RT-qPCR) confirmed downregulation of miR-142-3p in the discovery cohort. These findings were not replicated in the subsequent validation cohort (n = 22). This study is the first study to profile microRNA expression after vaccination. An important feature of this study is many of the differentially expressed microRNAs could not be detected and validated by RT-qPCR. This study highlights the care that should be taken when interpreting omics biomarker discovery, highlighting the need for supplementary methods to validate microRNA microarray findings, and emphasises the importance of validation cohorts. Data from similar studies which do not meet these requirements should be interpreted with caution.
Suppression of USP18 Potentiates the Anti-HBV Activity of Interferon Alpha in HepG2.2.15 Cells via JAK/STAT Signaling
Ubiquitin-specific protease 18 (USP18, also known as UBP43) has both interferon stimulated gene 15 (ISG15) dependent and ISG15-independent functions. By silencing the expression of USP18 in HepG2.2.15 cells, we studied the effect of USP18 on the anti-HBV activity of IFN-F and demonstrated that knockdown of USP18 significantly Inhibited the HBV expression and increased the expression of ISGs. Levels of hepatitis B virus surface antigen (HBsAg), hepatitis B virus e antigen (HBeAg), HBV DNA and intracellular hepatitis B virus core antigen (HBcAg) were dramatically decreased with or without treatment of indicated dose of IFN-F. Suppression of USP18 activated the JAK/STAT signaling pathway as shown by the increased and prolonged expression of phosphorylated signal transducer and activator of transcription 1 (p-STAT1) in combination with enhanced expression of several interferon stimulated genes (ISGs). Our results indicated that USP18 modulates the anti-HBV activity of IFN-F via activation of the JAK/STAT signaling pathway in Hepg2.2.15 cells.