Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
235,041
result(s) for
"General Physics"
Sort by:
Electron acceleration by wave turbulence in a magnetized plasma
2018
Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ1–3. Strong shocks are expected to accelerate particles to very high energies4–6; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool7,8. Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind9, a setting where electron acceleration via lower-hybrid waves is possible.
Journal Article
Long and isolated graphene nanoribbons by on-surface polymerization on Au(111)
by
Dujardin, Erik
,
Joachim, Christian
,
Thupakula, Umamahesh
in
639/638/542/968
,
639/925/357/551
,
639/925/918/1055
2023
Low electronic gap graphene nanoribbons (GNRs) are used for the fabrication of nanomaterial-based devices and, when isolated, for mono-molecular electronics experiences, for which a well-controlled length is crucial. Here, an on-surface chemistry protocol is monitored for producing long and well-isolated GNR molecular wires on an Au(111) surface. The two-step Ullmann coupling reaction is sequenced in temperature from 100 °C to 350 °C by steps of 50 °C, returning at room temperature between each step and remaining in ultrahigh vacuum conditions. After the first annealing step at 100 °C, the monomers self-organize into 2-monolayered nano-islands. Next, the Ullmann coupling reaction takes place in both 1st and 2nd layers of those nano-islands. The nano-island lateral size and shape are controlling the final GNR lengths. Respecting the above on-surface chemistry protocol, an optimal initial monomer coverage of ~1.5 monolayer produces isolated GNRs with a final length distribution reaching up to 50 nm and a low surface coverage of ~0.4 monolayer suitable for single molecule experiments.
The on-surface synthesis of graphene nanoribbons with control over their length and final surface coverage is desirable for electronic applications. Here, the authors outline a protocol to produce long and isolated graphene nanoribbons on an Au(111) surface, achieving lengths of up coverage down to ~0.4 monolayer, of potential value for mono-molecular electronics. to 50 nm and a low surface coverage down to ~0.4 monolayer, of potential value for mono-molecular electronics.
Journal Article
The holographic entropy cone
by
Nezami, Sepehr
,
Stoica, Bogdan
,
Walter, Michael
in
Classical and Quantum Gravitation
,
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
,
Elementary Particles
2015
A
bstract
We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.
Journal Article
On gravity : a brief tour of a weighty subject
\"In On Gravity, physicist A. Zee combines profound depth with incisive accessibility to take us on an original and compelling tour of Einstein's general theory of relativity. Inspired by Einstein's audacious suggestion that spacetime could ripple, Zee begins with the stunning discovery of gravity waves. He goes on to explain how gravity can be understood in comparison to other classical field theories, presents the idea of curved spacetime and the action principle, and explores cutting-edge topics, including black holes and Hawking radiation. Zee travels as far as the theory reaches, leaving us with tantalizing hints of the utterly unknown, from the intransigence of quantum gravity to the mysteries of dark matter and energy. Concise and precise, and infused with Zee's signature warmth and freshness of style, On Gravity opens a unique pathway to comprehending relativity and gaining deep insight into gravity, spacetime, and the workings of the universe\"--Publisher's website.
Detecting radioactive particles in complex environmental samples using real-time autoradiography
2024
Radioactive particles often contain very high radioactivity concentrations and are widespread. They pose a potential risk to human health and the environment. Their detection, quantification, and characterization are crucial if we are to understand their impact. Here, we present the use of a real-time autoradiography gaseous detector (using parallel ionization multiplier) to expedite and improve the accuracy of radioactive particle screening in complex environmental samples. First, standard particles were used to assess the detector capabilities (spatial resolution, spectrometry, and artefact contributions), then, we applied the technique to more complex and environmentally relevant samples. The real-time autoradiography technique provides data with a spatial resolution (≲100 µm) suitable for particle analysis in complex samples. Further, it can differentiate between particles predominantly emitting alpha and beta radiation. Here, the technique is applied to radioactive cesium-rich microparticles collected from the Fukushima Daiichi nuclear exclusion zone, showing their accurate detection, and demonstrating the viability of real-time autoradiography in environmental scenarios. Indeed, for more complex samples (radioactive particles in a less radioactive heterogeneous background mix of minerals), the technique permits relatively high selectivity for radioactive particle screening (up to 61.2% success rate) with low false positive percentages (~ 1%).
Journal Article