Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4,119 result(s) for "General aspects and techniques. Study of several systematic groups. Models"
Sort by:
Toxoplasmosis in humans and animals in Brazil: high prevalence, high burden of disease, and epidemiology
Infections by the protozoan parasite Toxoplasma gondii are widely prevalent in humans and animals in Brazil. The burden of clinical toxoplasmosis in humans is considered to be very high. The high prevalence and encouragement of the Brazilian Government provides a unique opportunity for international groups to study the epidemiology and control of toxoplasmosis in Brazil. Many early papers on toxoplasmosis in Brazil were published in Portuguese and often not available to scientists in English-speaking countries. In the present paper we review prevalence, clinical spectrum, molecular epidemiology, and control of T. gondii in humans and animals in Brazil. This knowledge should be useful to biologists, public health workers, veterinarians, and physicians. Brazil has a very high rate of T. gondii infection in humans. Up to 50% of elementary school children and 50–80% of women of child-bearing age have antibodies to T. gondii. The risks for uninfected women to acquire toxoplasmosis during pregnancy and fetal transmission are high because the environment is highly contaminated with oocysts. The burden of toxoplasmosis in congenitally infected children is also very high. From limited data on screening of infants for T. gondii IgM at birth, 5–23 children are born infected per 10 000 live births in Brazil. Based on an estimate of 1 infected child per 1000 births, 2649 children with congenital toxoplasmosis are likely to be born annually in Brazil. Most of these infected children are likely to develop symptoms or signs of clinical toxoplasmosis. Among the congenitally infected children whose clinical data are described in this review, several died soon after birth, 35% had neurological disease including hydrocephalus, microcephaly and mental retardation, 80% had ocular lesions, and in one report 40% of children had hearing loss. The severity of clinical toxoplasmosis in Brazilian children may be associated with the genetic characteristics of T. gondii isolates prevailing in animals and humans in Brazil.
Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences
The complex world of arthropods The evolutionary interrelationship of arthropods (jointed-legged animals) has long been a matter of dispute. A new phylogeny based on an analysis of over 41,000 base pairs of DNA from 75 species, including representatives of every major arthropod lineage, should ease the way towards a consensus on the matter. The data support the idea that insects are land-living crustaceans, that crustaceans comprise a diverse assemblage of at last three distinct arthropod types, and that myriapods (millipedes and centipedes) are the closest relatives of this great 'pancrustacean' group. The evolutionary interrelationships of arthropods has long been a matter of dispute. A new phylogeny applies an arsenal of techniques to more than 41,000 base pairs of DNA from 75 arthropod species. The results support the idea that insects are land–living crustaceans, that crustaceans comprise a diverse assemblage of at last three distinct arthropod types, and that myriapods (millipedes and centipedes) comprise the closest relatives of this great 'pancrustacean' group. The remarkable antiquity, diversity and ecological significance of arthropods have inspired numerous attempts to resolve their deep phylogenetic history, but the results of two decades of intensive molecular phylogenetics have been mixed 1 , 2 , 3 , 4 , 5 , 6 , 7 . The discovery that terrestrial insects (Hexapoda) are more closely related to aquatic Crustacea than to the terrestrial centipedes and millipedes 2 , 8 (Myriapoda) was an early, if exceptional, success. More typically, analyses based on limited samples of taxa and genes have generated results that are inconsistent, weakly supported and highly sensitive to analytical conditions 7 , 9 , 10 . Here we present strongly supported results from likelihood, Bayesian and parsimony analyses of over 41 kilobases of aligned DNA sequence from 62 single-copy nuclear protein-coding genes from 75 arthropod species. These species represent every major arthropod lineage, plus five species of tardigrades and onychophorans as outgroups. Our results strongly support Pancrustacea (Hexapoda plus Crustacea) but also strongly favour the traditional morphology-based Mandibulata 11 (Myriapoda plus Pancrustacea) over the molecule-based Paradoxopoda (Myriapoda plus Chelicerata) 2 , 5 , 12 . In addition to Hexapoda, Pancrustacea includes three major extant lineages of ‘crustaceans’, each spanning a significant range of morphological disparity. These are Oligostraca (ostracods, mystacocarids, branchiurans and pentastomids), Vericrustacea (malacostracans, thecostracans, copepods and branchiopods) and Xenocarida (cephalocarids and remipedes). Finally, within Pancrustacea we identify Xenocarida as the long-sought sister group to the Hexapoda, a result confirming that ‘crustaceans’ are not monophyletic. These results provide a statistically well-supported phylogenetic framework for the largest animal phylum and represent a step towards ending the often-heated, century-long debate on arthropod relationships.
Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm
The twin concepts of zooprophylaxis and the dilution effect originated with vector-borne diseases (malaria), were driven forward by studies on Lyme borreliosis and have now developed into the mantra “biodiversity protects against disease”. The basic idea is that by diluting the assemblage of transmission-competent hosts with non-competent hosts, the probability of vectors feeding on transmission-competent hosts is reduced and so the abundance of infected vectors is lowered. The same principle has recently been applied to other infectious disease systems – tick-borne, insect-borne, indirectly transmitted via intermediate hosts, directly transmitted. It is claimed that the presence of extra species of various sorts, acting through a variety of distinct mechanisms, causes the prevalence of infectious agents to decrease. Examination of the theoretical and empirical evidence for this hypothesis reveals that it applies only in certain circumstances even amongst tick-borne diseases, and even less often if considering the correct metric – abundance rather than prevalence of infected vectors. Whether dilution or amplification occurs depends more on specific community composition than on biodiversity per se. We warn against raising a straw man, an untenable argument easily dismantled and dismissed. The intrinsic value of protecting biodiversity and ecosystem function outweighs this questionable utilitarian justification.
Moving towards an integrated approach to molecular detection and identification of Toxoplasma gondii
The development of simple, sensitive and rapid methods for the detection and identification of Toxoplasma gondii is important for the diagnosis and epidemiological studies of the zoonotic disease toxoplasmosis. In the past 2 decades, molecular methods based on a variety of genetic markers have been developed, each with its advantages and limitations. The application of these methods has generated invaluable information to enhance our understanding of the epidemiology, population genetics and phylogeny of T. gondii. However, since most studies focused solely on the detection but not genetic characterization of T. gondii, the information obtained was limited. In this review, we discuss some widely used molecular methods and propose an integrated approach for the detection and identification of T. gondii, in order to generate maximum information for epidemiological, population and phylogenetic studies of this key pathogen.
Nanoscale chemical tomography of buried organic–inorganic interfaces in the chiton tooth
Nanoscale tomography of complex biomaterials Many biomineralized tissues, such as teeth and bone, are hybrid inorganic–organic materials whose properties are determined by their convoluted internal structures. Lyle Gordon and Derk Joester now show how the internal structural and chemical complexity of such biomaterials and their synthetic analogues can be elucidated using pulsed-laser atom-probe tomography (APT), an established technique in metallurgical and semiconductor research. The model for the study was a tooth from a marine mollusc, the Eastern beaded chiton. The resulting high-resolution three-dimensional chemical maps reveal individual organic fibres within the tooth that have different compositions, and therefore probably different functional roles in controlling the interactions between the organic matrix and inorganic mineral phases. As well as revealing the nature of naturally occurring materials, the use of APT in this field should provide useful data for the design of bio-inspired composites for medical and industrial applications. Many biomineralized tissues (such as teeth and bone) are hybrid inorganic–organic materials whose properties are determined by their convoluted internal structures. Now, using a chiton tooth as an example, this study shows how the internal structural and chemical complexity of such biomaterials and their synthetic analogues can be elucidated using pulsed-laser atom-probe tomography. Biological organisms possess an unparalleled ability to control the structure and properties of mineralized tissues. They are able, for example, to guide the formation of smoothly curving single crystals or tough, lightweight, self-repairing skeletal elements 1 . In many biominerals, an organic matrix interacts with the mineral as it forms, controls its morphology and polymorph, and is occluded during mineralization 2 , 3 , 4 . The remarkable functional properties of the resulting composites—such as outstanding fracture toughness and wear resistance—can be attributed to buried organic–inorganic interfaces at multiple hierarchical levels 5 . Analysing and controlling such interfaces at the nanometre length scale is critical also in emerging organic electronic and photovoltaic hybrid materials 6 . However, elucidating the structural and chemical complexity of buried organic–inorganic interfaces presents a challenge to state-of-the-art imaging techniques. Here we show that pulsed-laser atom-probe tomography reveals three-dimensional chemical maps of organic fibres with a diameter of 5–10 nm in the surrounding nano-crystalline magnetite (Fe 3 O 4 ) mineral in the tooth of a marine mollusc, the chiton Chaetopleura apiculata . Remarkably, most fibres co-localize with either sodium or magnesium. Furthermore, clustering of these cations in the fibre indicates a structural level of hierarchy previously undetected. Our results demonstrate that in the chiton tooth, individual organic fibres have different chemical compositions, and therefore probably different functional roles in controlling fibre formation and matrix–mineral interactions. Atom-probe tomography is able to detect this chemical/structural heterogeneity by virtue of its high three-dimensional spatial resolution and sensitivity across the periodic table. We anticipate that the quantitative analysis and visualization of nanometre-scale interfaces by laser-pulsed atom-probe tomography will contribute greatly to our understanding not only of biominerals (such as bone, dentine and enamel), but also of synthetic organic–inorganic composites.
Hydrodynamic interaction of two swimming model micro-organisms
In order to understand the rheological and transport properties of a suspension of swimming micro-organisms, it is necessary to analyse the fluid-dynamical interaction of pairs of such swimming cells. In this paper, a swimming micro-organism is modelled as a squirming sphere with prescribed tangential surface velocity, referred to as a squirmer. The centre of mass of the sphere may be displaced from the geometric centre (bottom-heaviness). The effects of inertia and Brownian motion are neglected, because real micro-organisms swim at very low Reynolds numbers but are too large for Brownian effects to be important. The interaction of two squirmers is calculated analytically for the limits of small and large separations and is also calculated numerically using a boundary-element method. The analytical and the numerical results for the translational–rotational velocities and for the stresslet of two squirmers correspond very well. We sought to generate a database for an interacting pair of squirmers from which one can easily predict the motion of a collection of squirmers. The behaviour of two interacting squirmers is discussed phenomenologically, too. The results for the trajectories of two squirmers show that first the squirmers attract each other, then they change their orientation dramatically when they are in near contact and finally they separate from each other. The effect of bottom-heaviness is considerable. Restricting the trajectories to two dimensions is shown to give misleading results. Some movies of interacting squirmers are available with the online version of the paper.
Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis
Zoonotic visceral leishmaniasis (ZVL) caused by Leishmania infantum is an important disease of humans and dogs. Here we review aspects of the transmission and control of ZVL. Whilst there is clear evidence that ZVL is maintained by sandfly transmission, transmission may also occur by non-sandfly routes, such as congenital and sexual transmission. Dogs are the only confirmed primary reservoir of infection. Meta-analysis of dog studies confirms that infectiousness is higher in symptomatic infection; infectiousness is also higher in European than South American studies. A high prevalence of infection has been reported from an increasing number of domestic and wild mammals; updated host ranges are provided. The crab-eating fox Cerdocyon thous, opossums Didelphis spp., domestic cat Felis cattus, black rat Rattus rattus and humans can infect sandflies, but confirmation of these hosts as primary or secondary reservoirs requires further xenodiagnosis studies at the population level. Thus the putative sylvatic reservoir(s) of ZVL remains unknown. Review of intervention studies examining the effectiveness of current control methods highlights the lack of randomized controlled trials of both dog culling and residual insecticide spraying. Topical insecticides (deltamethrin-impregnated collars and pour-ons) have been shown to provide a high level of individual protection to treated dogs, but further community-level studies are needed.
Flying Insect Classification with Inexpensive Sensors
The ability to use inexpensive, noninvasive sensors to accurately classify flying insects would have significant implications for entomological research, and allow for the development of many useful applications in vector control for both medical and agricultural entomology. Given this, the last sixty years have seen many research efforts on this task. To date, however, none of this research has had a lasting impact. In this work, we explain this lack of progress. We attribute the stagnation on this problem to several factors, including the use of acoustic sensing devices, the overreliance on the single feature of wingbeat frequency, and the attempts to learn complex models with relatively little data. In contrast, we show that pseudo-acoustic optical sensors can produce vastly superior data, that we can exploit additional features, both intrinsic and extrinsic to the insect’s flight behavior, and that a Bayesian classification approach allows us to efficiently learn classification models that are very robust to overfitting. We demonstrate our findings with large scale experiments, as measured both by the number of insects and the number of species considered.
Cerebral malaria: why experimental murine models are required to understand the pathogenesis of disease
Cerebral malaria is a life-threatening complication of malaria infection. The pathogenesis of cerebral malaria is poorly defined and progress in understanding the condition is severely hampered by the inability to study in detail, ante-mortem, the parasitological and immunological events within the brain that lead to the onset of clinical symptoms. Experimental murine models have been used to investigate the sequence of events that lead to cerebral malaria, but there is significant debate on the merits of these models and whether their study is relevant to human disease. Here we review the current understanding of the parasitological and immunological events leading to human and experimental cerebral malaria, and explain why we believe that studies with experimental models of CM are crucial to define the pathogenesis of the condition.
Are there general laws in parasite ecology?
As a scientific discipline matures, its theoretical underpinnings tend to consolidate around a few general laws that explain a wide range of phenomena, and from which can be derived further testable predictions. It is one of the goals of science to uncover the general principles that produce recurring patterns in nature. Although this has happened in many areas of physics and chemistry, ecology is yet to take this important step. Ecological systems are intrinsically complex, but this does not necessarily mean that everything about them is unpredictable or chaotic. Ecologists, whose grand aim is to understand the interactions that govern the distribution, abundance and diversity of living organisms at different scales, have uncovered several regular patterns, i.e. widely observable statistical tendencies, in the abundance or diversity of organisms in natural ecosystems. Some of these patterns, however, are contingent, i.e. they are only true under particular circumstances; nevertheless, the broad generality of many patterns hints at the existence of universal principles. What about parasite ecology: is it also characterized by recurring patterns and general principles? Evidence for repeatable empirical patterns in parasite ecology is reviewed here, in search of patterns that are consistently detectable across taxa or geographical areas. The coverage ranges from the population level all the way to large-scale patterns of parasite diversity and abundance (or biomass) and patterns in the structure of host-parasite interaction networks. Although general laws seem to apply to these extreme scales of studies, most patterns observed at the intermediate scale, i.e. the parasite community level, appear highly contingent and far from universal. The general laws uncovered to date are proving valuable, as they offer glimpses of the underlying processes shaping parasite ecology and diversity.