Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
64,585
result(s) for
"General relativity"
Sort by:
New horizons for fundamental physics with LISA
by
Fleury, Pierre
,
Orlando, Giorgio
,
Gualtieri, Leonardo
in
Astrophysics
,
Black holes
,
Consortia
2022
The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas.
Journal Article
The amplitude for classical gravitational scattering at third Post-Minkowskian order
by
Damgaard, Poul H.
,
Vanhove, Pierre
,
Bjerrum-Bohr, N. Emil J.
in
Classical and Quantum Gravitation
,
Classical Theories of Gravity
,
Effective Field Theories
2021
A
bstract
We compute the scattering amplitude for classical black-hole scattering to third order in the Post-Minkowskian expansion, keeping all terms needed to derive the scattering angle to that order from the eikonal formalism. Our results confirm a conjectured relation between the real and imaginary parts of the amplitude by Di Vecchia, Heissenberg, Russo, and Veneziano, and are in agreement with a recent computation by Damour based on radiation reaction in general relativity.
Journal Article
On gravity : a brief tour of a weighty subject
\"In On Gravity, physicist A. Zee combines profound depth with incisive accessibility to take us on an original and compelling tour of Einstein's general theory of relativity. Inspired by Einstein's audacious suggestion that spacetime could ripple, Zee begins with the stunning discovery of gravity waves. He goes on to explain how gravity can be understood in comparison to other classical field theories, presents the idea of curved spacetime and the action principle, and explores cutting-edge topics, including black holes and Hawking radiation. Zee travels as far as the theory reaches, leaving us with tantalizing hints of the utterly unknown, from the intransigence of quantum gravity to the mysteries of dark matter and energy. Concise and precise, and infused with Zee's signature warmth and freshness of style, On Gravity opens a unique pathway to comprehending relativity and gaining deep insight into gravity, spacetime, and the workings of the universe\"--Publisher's website.
Massive Gravity
2014
We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali-Gabadadze-Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware-Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alternative and related models of massive gravity such as new massive gravity, Lorentz-violating massive gravity and non-local massive gravity.
Journal Article
Einstein gravity in a nutshell
\"This unique textbook provides an accessible introduction to Einstein's general theory of relativity, a subject of breathtaking beauty and supreme importance in physics. With his trademark blend of wit and incisiveness, A. Zee guides readers from the fundamentals of Newtonian mechanics to the most exciting frontiers of research today, including de Sitter and anti-de Sitter spacetimes, Kaluza-Klein theory, and brane worlds. Unlike other books on Einstein gravity, this book emphasizes the action principle and group theory as guides in constructing physical theories. Zee treats various topics in a spiral style that is easy on beginners, and includes anecdotes from the history of physics that will appeal to students and experts alike. He takes a friendly approach to the required mathematics, yet does not shy away from more advanced mathematical topics such as differential forms. The extensive discussion of black holes includes rotating and extremal black holes and Hawking radiation. The ideal textbook for undergraduate and graduate students, Einstein Gravity in a Nutshell also provides an essential resource for professional physicists and is accessible to anyone familiar with classical mechanics and electromagnetism. It features numerous exercises as well as detailed appendices covering a multitude of topics not readily found elsewhere. Provides an accessible introduction to Einstein's general theory of relativity Guides readers from Newtonian mechanics to the frontiers of modern research Emphasizes symmetry and the Einstein-Hilbert action Covers topics not found in standard textbooks on Einstein gravity Includes interesting historical asides Features numerous exercises and detailed appendices Ideal for students, physicists, and scientifically minded lay readers Solutions manual (available only to teachers) \"-- Provided by publisher.
Ladder symmetries and Love numbers of Reissner-Nordström black holes
by
Rai, Mudit
,
Santoni, Luca
in
Black Holes
,
Classical and Quantum Gravitation
,
Classical Theories of Gravity
2024
A
bstract
It is well known that asymptotically flat black holes in general relativity have vanishing tidal Love numbers. In the case of Schwarzschild and Kerr black holes, this property has been shown to be a consequence of a hidden structure of ladder symmetries for the perturbations. In this work, we extend the ladder symmetries to non-rotating charged black holes in general relativity. As opposed to previous works in this context, we adopt a more general definition of Love numbers, including quadratic operators that mix gravitational and electromagnetic perturbations in the point-particle effective field theory. We show that the calculation of a subset of those couplings in full general relativity is affected by an ambiguity in the split between source and response, which we resolve through an analytic continuation. As a result, we derive a novel master equation that unifies scalar, electromagnetic and gravitational perturbations around Reissner-Nordström black holes. The equation is hypergeometric and can be obtained from previous formulations via nontrivial field redefinitions, which allow to systematically remove some of the singularities and make the presence of the ladder symmetries more manifest.
Journal Article
Classical observables from the exponential representation of the gravitational S-matrix
by
Hansen, Elias Roos
,
Damgaard, Poul H.
,
Vanhove, Pierre
in
Classical and Quantum Gravitation
,
Classical Theories of Gravity
,
Effective Field Theories
2023
A
bstract
By combining the KMOC-formalism with the exponential representation of the scattering matrix we show that the two-body scattering angle is given by the corresponding matrix element of the exponential representation. This holds to all orders in the Post-Minkowskian expansion of gravity when restricted to the conservative sector. Once gravitational radiation is taken into account new terms correcting this relationship appear starting at fourth Post-Minkowskian order. A systematic expansion of the momentum kick is provided to any order, thus illustrating the iterative structure that partly recycles terms from lower orders in the Post-Minkowskian expansion. We provide explicit results for this computation to fourth Post-Minkowskian order, the first complete calculation at this order based on scattering amplitudes.
Journal Article