Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Generative modelling and image formation"
Sort by:
Stochastic image spectroscopy: a discriminative generative approach to hyperspectral image modelling and classification
This paper introduces a new latent variable probabilistic framework for representing spectral data of high spatial and spectral dimensionality, such as hyperspectral images. We use a generative Bayesian model to represent the image formation process and provide interpretable and efficient inference and learning methods. Surprisingly, our approach can be implemented with simple tools and does not require extensive training data, detailed pixel-by-pixel labeling, or significant computational resources. Numerous experiments with simulated data and real benchmark scenarios show encouraging image classification performance. These results validate the unique ability of our framework to discriminate complex hyperspectral images, irrespective of the presence of highly discriminative spectral signatures.
Searching for Category-Consistent Features: A Computational Approach to Understanding Visual Category Representation
This article introduces a generative model of category representation that uses computer vision methods to extract category-consistent features (CCFs) directly from images of category exemplars. The model was trained on 4,800 images of common objects, and CCFs were obtained for 68 categories spanning subordinate, basic, and superordinate levels in a category hierarchy. When participants searched for these same categories, targets cued at the subordinate level were preferentially fixated, but fixated targets were verified faster when they followed a basic-level cue. The subordinate-level advantage in guidance is explained by the number of target-category CCFs, a measure of category specificity that decreases with movement up the category hierarchy. The basic-level advantage in verification is explained by multiplying the number of CCFs by sibling distance, a measure of category distinctiveness. With this model, the visual representations of real-world object categories, each learned from the vast numbers of image exemplars accumulated throughout everyday experience, can finally be studied.