Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
615
result(s) for
"Genes, Lethal - physiology"
Sort by:
RAD52 inactivation is synthetically lethal with deficiencies in BRCA1 and PALB2 in addition to BRCA2 through RAD51-mediated homologous recombination
2013
Synthetic lethality is an approach to study selective cell killing based on genotype. Previous work in our laboratory has shown that loss of RAD52 is synthetically lethal with BRCA2 deficiency, while exhibiting no impact on cell growth and viability in BRCA2-proficient cells. We now show that this same synthetically lethal relationship is evident in cells with deficiencies in BRCA1 or PALB2, which implicates BRCA1, PALB2 and BRCA2 in an epistatic relationship with one another. When RAD52 was depleted in BRCA1- or PALB2-deficient cells, a severe reduction in plating efficiency was observed, with many abortive attempts at cell division apparent in the double-depleted background. In contrast, when RAD52 was depleted in a BRCA1- or PALB2-wildtype background, a negligible decrease in colony survival was observed. The frequency of ionizing radiation-induced RAD51 foci formation and double-strand break-induced homologous recombination (HR) was decreased by 3- and 10-fold, respectively, when RAD52 was knocked down in BRCA1- or PALB2-depleted cells, with minimal effect in BRCA1- or PALB2-proficient cells. RAD52 function was independent of BRCA1 status, as evidenced by the lack of any defect in RAD52 foci formation in BRCA1-depleted cells. Collectively, these findings suggest that RAD52 is an alternative repair pathway of RAD51-mediated HR, and a target for therapy in cells deficient in the BRCA1–PALB2–BRCA2 repair pathway.
Journal Article
WASH inhibits autophagy through suppression of Beclin 1 ubiquitination
by
Wang, Shuo
,
Zhao, Zhenao
,
Huang, Guanling
in
Ambra1
,
Animals
,
Apoptosis Regulatory Proteins - metabolism
2013
Autophagy degrades cytoplasmic proteins and organelles to recycle cellular components that are required for cell survival and tissue homeostasis. However, it is not clear how autophagy is regulated in mammalian cells. WASH (Wiskott–Aldrich syndrome protein (WASP) and SCAR homologue) plays an essential role in endosomal sorting through facilitating tubule fission via Arp2/3 activation. Here, we demonstrate a novel function of WASH in modulation of autophagy. We show that WASH deficiency causes early embryonic lethality and extensive autophagy of mouse embryos. WASH inhibits vacuolar protein sorting (Vps)34 kinase activity and autophagy induction. We identified that WASH is a new interactor of Beclin 1. Beclin 1 is ubiquitinated at lysine 437 through lysine 63 linkage in cells undergoing autophagy. Ambra1 is an E3 ligase for lysine 63‐linked ubiquitination of Beclin 1 that is required for starvation‐induced autophagy. The lysine 437 ubiquitination of Beclin 1 enhances the association with Vps34 to promote Vps34 activity. WASH can suppress Beclin 1 ubiquitination to inactivate Vps34 activity leading to suppression of autophagy.
WASH, a regulator of endosomal fission via activation of Arp2/3, is shown for the first time to inhibit autophagy during embryonic development by suppression of lysine 437 ubiquitination of Beclin 1.
Journal Article
An essential cell cycle regulation gene causes hybrid inviability in Drosophila
2015
Speciation, the process by which new biological species arise, involves the evolution of reproductive barriers, such as hybrid sterility or inviability between populations. However, identifying hybrid incompatibility genes remains a key obstacle in understanding the molecular basis of reproductive isolation. We devised a genomic screen, which identified a cell cycle–regulation gene as the cause of male inviability in hybrids resulting from a cross between Drosophila melanogaster and D. simulans. Ablation of the D. simulans allele of this gene is sufficient to rescue the adult viability of hybrid males. This dominantly acting cell cycle regulator causes mitotic arrest and, thereby, inviability of male hybrid larvae. Our genomic method provides a facile means to accelerate the identification of hybrid incompatibility genes in other model and nonmodel systems.
Journal Article
Balancing selection on a recessive lethal deletion with pleiotropic effects on two neighboring genes in the porcine genome
by
Lopes, Marcos S.
,
Derks, Martijn F. L.
,
Megens, Hendrik-Jan
in
Analysis
,
Animal Breeding and Genetics
,
Animal Breeding and Genomics
2018
Livestock populations can be used to study recessive defects caused by deleterious alleles. The frequency of deleterious alleles including recessive lethal alleles can stay at high or moderate frequency within a population, especially if recessive lethal alleles exhibit an advantage for favourable traits in heterozygotes. In this study, we report such a recessive lethal deletion of 212kb (del) within the BBS9 gene in a breeding population of pigs. The deletion produces a truncated BBS9 protein expected to cause a complete loss-of-function, and we find a reduction of approximately 20% on the total number of piglets born from carrier by carrier matings. Homozygous del/del animals die mid- to late-gestation, as observed from high increase in numbers of mummified piglets resulting from carrier-by-carrier crosses. The moderate 10.8% carrier frequency (5.4% allele frequency) in this pig population suggests an advantage on a favourable trait in heterozygotes. Indeed, heterozygous carriers exhibit increased growth rate, an important selection trait in pig breeding. Increased growth and appetite together with a lower birth weight for carriers of the BBS9 null allele in pigs is analogous to the phenotype described in human and mouse for (naturally occurring) BBS9 null-mutants. We show that fetal death, however, is induced by reduced expression of the downstream BMPER gene, an essential gene for normal foetal development. In conclusion, this study describes a lethal 212kb deletion with pleiotropic effects on two different genes, one resulting in fetal death in homozygous state (BMPER), and the other increasing growth (BBS9) in heterozygous state. We provide strong evidence for balancing selection resulting in an unexpected high frequency of a lethal allele in the population. This study shows that the large amounts of genomic and phenotypic data routinely generated in modern commercial breeding programs deliver a powerful tool to monitor and control lethal alleles much more efficiently.
Journal Article
Two P-Type ATPases Are Required for Copper Delivery in Arabidopsis thaliana Chloroplasts
by
Můller-Moulé, Patricia
,
Shikanai, Toshiharu
,
Pilon, Marinus
in
Adenosine triphosphatases
,
Amino Acid Sequence
,
amino acid sequences
2005
Copper delivery to the thylakoid lumen protein plastocyanin and the stromal enzyme Cu/Zn superoxide dismutase in chloroplasts is required for photosynthesis and oxidative stress protection. The copper delivery system in chloroplasts was characterized by analyzing the function of copper transporter genes in Arabidopsis thaliana. Two mutant alleles were identified of a previously uncharacterized gene, PAA2 (for P-type ATPase of Arabidopsis), which is required for efficient photosynthetic electron transport. PAA2 encodes a copper-transporting P-type ATPase with sequence similarity to PAA1, which functions in copper transport in chloroplasts. Both proteins localized to the chloroplast, as indicated by fusions to green fluorescent protein. The PAA1 fusions were found in the chloroplast periphery, whereas PAA2 fusions were localized in thylakoid membranes. The phenotypes of paa1 and paa2 mutants indicated that the two transporters have distinct functions: whereas both transporters are required for copper delivery to plastocyanin, copper delivery to the stroma is inhibited only in paa1 but not in paa2. The effects of paa1 and paa2 on superoxide dismutase isoform expression levels suggest that stromal copper levels regulate expression of the nuclear genes IRON SUPEROXIDE DISMUTASE1 and COPPER/ZINC SUPEROXIDE DISMUTASE2. A paa1 paa2 double mutant was seedling-lethal, underscoring the importance of copper to photosynthesis. We propose that PAA1 and PAA2 function sequentially in copper transport over the envelope and thylakoid membrane, respectively.
Journal Article
Preferential protection of protein interaction network hubs in yeast: Evolved functionality of genetic redundancy
by
Kafri, Ran
,
Pilpel, Yitzhak
,
Levy, Jonathan
in
Biological Sciences
,
Connectivity
,
Data analysis
2008
The widely observed dispensability of duplicate genes is typically interpreted to suggest that a proportion of the duplicate pairs are at least partially redundant in their functions, thus allowing for compensatory affects. However, because redundancy is expected to be evolutionarily short lived, there is currently debate on both the proportion of redundant duplicates and their functional importance. Here, we examined these compensatory interactions by relying on a genome wide data analysis, followed by experiments and literature mining in yeast. Our data, thus, strongly suggest that compensated duplicates are not randomly distributed within the protein interaction network but are rather strategically allocated to the most highly connected proteins. This design is appealing because it suggests that many of the potentially vulnerable nodes that would otherwise be highly sensitive to mutations are often protected by redundancy. Furthermore, divergence analyses show that this association between redundancy and protein connectivity becomes even more significant among the ancient duplicates, suggesting that these functional overlaps have undergone purifying selection. Our results suggest an intriguing conclusion--although redundancy is typically transient on evolutionary time scales, it tends to be preserved among some of the central proteins in the cellular interaction network.
Journal Article
Secreted Sulfatases Sulf1 and Sulf2 Have Overlapping yet Essential Roles in Mouse Neonatal Survival
2007
Heparan sulfate proteoglycans (HSPGs) use highly sulfated polysaccharide side-chains to interact with several key growth factors and morphogens, thereby regulating their accessibility and biological activity. Various sulfotransferases and sulfatases with differing specificities control the pattern of HSPG sulfation, which is functionally critical. Among these enzymes in the mouse are two secreted 6-O-endosulfatases, Sulf1 and Sulf2, which modify HSPGs in the extracellular matrix and on the cell surface. The roles of Sulf1 and Sulf2 during normal development are not well understood.
To investigate the importance of Sulf1 and Sulf2 for embryonic development, we generated mice genetically deficient in these genes and assessed the phenotypes of the resulting secreted sulfatase-deficient mice. Surprisingly, despite the established crucial role of HSPG interactions during development, neither Sulf1- nor Sulf2-deficient mice showed significant developmental flaws. In contrast, mice deficient in both Sulf1and Sulf2 exhibited highly penetrant neonatal lethality. Loss of viability was associated with multiple, although subtle, developmental defects, including skeletal and renal abnormalities.
These results show that Sulf1 and Sulf2 play overlapping yet critical roles in mouse development and are redundant and essential for neonatal survival.
Journal Article
roX RNAs Are Required for Increased Expression of X-Linked Genes in Drosophila melanogaster Males
by
Deng, Xinxian
,
Meller, Victoria H
in
Animals
,
DNA-Binding Proteins - genetics
,
DNA-Binding Proteins - metabolism
2006
The male-specific lethal (MSL) ribonucleoprotein complex is necessary for equalization of X:A expression levels in Drosophila males, which have a single X chromosome. It binds selectively to the male X chromosome and directs acetylation of histone H4 at lysine 16 (H4Ac16), a modification linked to elevated transcription. roX1 and roX2 noncoding RNAs are essential but redundant components of this complex. Simultaneous removal of both roX RNAs reduces X localization of the MSL proteins and permits their ectopic binding to autosomal sites and the chromocenter. However, the MSL proteins still colocalize, and low levels of H4Ac16 are detected at ectopic sites of MSL binding and residual sites on the X chromosome of roX1− roX2− males. Microarray analysis was performed to reveal the effect of roX1 and roX2 elimination on X-linked and autosomal gene expression. Expression of the X chromosome is decreased by 26% in roX1− roX2−male larvae. Enhanced expression could not be detected at autosomal sites of MSL binding in roX1− roX2− males. These results implicate failure to compensate X-linked genes, rather than inappropriate upregulation of autosomal genes at ectopic sites of MSL binding, as the primary cause of male lethality upon loss of roX RNAs.
Journal Article
Redundant and nonredundant organismal functions of EPS15 and EPS15L1
by
Pozzi, Benedetta
,
Beznoussenko, Galina V
,
Confalonieri, Stefano
in
Adaptor Proteins, Signal Transducing - genetics
,
Adaptor Proteins, Signal Transducing - metabolism
,
Anemia, Hypochromic - genetics
2019
EPS15 and its homologous EPS15L1 are endocytic accessory proteins. Studies in mammalian cell lines suggested that EPS15 and EPS15L1 regulate endocytosis in a redundant manner. However, at the organismal level, it is not known to which extent the functions of the two proteins overlap. Here, by exploiting various constitutive and conditional null mice, we report redundant and nonredundant functions of the two proteins. EPS15L1 displays a unique nonredundant role in the nervous system, whereas both proteins are fundamental during embryo development as shown by the embryonic lethality of - Eps15/Eps15L1 -double KO mice. At the cellular level, the major process redundantly regulated by EPS15 and EPS15L1 is the endocytosis of the transferrin receptor, a pathway that sustains the development of red blood cells and controls iron homeostasis. Consequently, hematopoietic-specific conditional Eps15 / Eps15L1 -double KO mice display traits of microcytic hypochromic anemia, due to a cell-autonomous defect in iron internalization.
Journal Article
Synthetic lethality of rpn11-1 rpn10Δ is linked to altered proteasome assembly and activity
by
Chandra, Abhishek
,
Chen, Li
,
Madura, Kiran
in
Endopeptidases - chemistry
,
Endopeptidases - genetics
,
Endopeptidases - metabolism
2010
An rpn11-1 temperature-sensitive mutant shows defect in proteolysis, mitochondrial function and proteasome assembly. The Rpn11 protein is a proteasome subunit that deubiquitinates proteolytic substrates. Multiubiquitinated proteins interact with proteasome receptors, such as Rpn10, which intriguingly is also required for promoting proteasome stability. We report here that Rpn10 binds Rpn11, and genetic studies revealed synthetic lethality of an rpn11-1 rpn10Δ double mutant. The carboxy-terminus of Rpn11 is critical for function, as deletion of 7 C-terminal residues prevented suppression of rpn11-1 rpn10Δ. Native gel electrophoresis showed increased levels of the proteasome 20S catalytic particle in rpn11-1 rpn10Δ, and altered assembly. The inviability of rpn11-1 rpn10Δ was suppressed by rpn10(uim), a mutant that can bind the proteasome, but not multiubiquitin chains. rpn10(uim) reduced the levels of free 20S, and increased formation of intact proteasomes. In contrast, rpn10(vwa), which binds multiubiquitin chains but not the proteasome, failed to suppress rpn11-1 rpn10Δ. Moreover, high levels of multiubiquitinated proteins were bound to rpn10(vwa), but were not delivered to the proteasome. Based on these findings, we propose that the lethality of rpn11-1 rpn10Δ results primarily from altered proteasome integrity. It is conceivable that Rpn10/Rpn11 interaction couples proteasome assembly to substrate binding.
Journal Article