Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
46,880
result(s) for
"Genetic Therapy - methods"
Sort by:
Long-term safety and efficacy of lentiviral hematopoietic stem/progenitor cell gene therapy for Wiskott–Aldrich syndrome
2022
Patients with Wiskott–Aldrich syndrome (WAS) lacking a human leukocyte antigen-matched donor may benefit from gene therapy through the provision of gene-corrected, autologous hematopoietic stem/progenitor cells. Here, we present comprehensive, long-term follow-up results (median follow-up, 7.6 years) (phase I/II trial no.
NCT02333760
) for eight patients with WAS having undergone phase I/II lentiviral vector-based gene therapy trials (nos.
NCT01347346
and
NCT01347242
), with a focus on thrombocytopenia and autoimmunity. Primary outcomes of the long-term study were to establish clinical and biological safety, efficacy and tolerability by evaluating the incidence and type of serious adverse events and clinical status and biological parameters including lentiviral genomic integration sites in different cell subpopulations from 3 years to 15 years after gene therapy. Secondary outcomes included monitoring the need for additional treatment and T cell repertoire diversity. An interim analysis shows that the study meets the primary outcome criteria tested given that the gene-corrected cells engrafted stably, and no serious treatment-associated adverse events occurred. Overall, severe infections and eczema resolved. Autoimmune disorders and bleeding episodes were significantly less frequent, despite only partial correction of the platelet compartment. The results suggest that lentiviral gene therapy provides sustained clinical benefits for patients with WAS.
Long-term monitoring of patients with Wiskott–Aldrich syndrome following lentiviral gene therapy shows a safe profile and a reduction in the frequency of autoimmune manifestations and bleeding events, despite incomplete platelet reconstitution.
Journal Article
Trinucleotide repeat instability during double-strand break repair: from mechanisms to gene therapy
by
Guy-Franck, Richard
,
Poggi, Lucie
,
Mosbach, Valentine
in
Complementary DNA
,
Contraction
,
Conversion
2019
Trinucleotide repeats are a particular class of microsatellites whose large expansions are responsible for at least two dozen human neurological and developmental disorders. Slippage of the two complementary DNA strands during replication, homologous recombination or DNA repair is generally accepted as a mechanism leading to repeat length changes, creating expansions and contractions of the repeat tract. The present review focuses on recent developments on double-strand break repair involving trinucleotide repeat tracts. Experimental evidences in model organisms show that gene conversion and break-induced replication may lead to large repeat tract expansions, while frequent contractions occur either by single-strand annealing between repeat ends or by gene conversion, triggering near-complete contraction of the repeat tract. In the second part of this review, different therapeutic approaches using highly specific single- or double-strand endonucleases targeted to trinucleotide repeat loci are compared. Relative efficacies and specificities of these nucleases will be discussed, as well as their potential strengths and weaknesses for possible future gene therapy of these dramatic disorders.
Journal Article
Induced pluripotent stem cells in disease modelling and drug discovery
2019
The derivation of induced pluripotent stem cells (iPSCs) over a decade ago sparked widespread enthusiasm for the development of new models of human disease, enhanced platforms for drug discovery and more widespread use of autologous cell-based therapy. Early studies using directed differentiation of iPSCs frequently uncovered cell-level phenotypes in monogenic diseases, but translation to tissue-level and organ-level diseases has required development of more complex, 3D, multicellular systems. Organoids and human–rodent chimaeras more accurately mirror the diverse cellular ecosystems of complex tissues and are being applied to iPSC disease models to recapitulate the pathobiology of a broad spectrum of human maladies, including infectious diseases, genetic disorders and cancer.Enthusiasm for patient-specific therapies based on induced pluripotent stem cells (iPSCs) has risen in parallel with rapid advances in genome editing. This Review summarizes the progress in iPSC-based disease modelling over the past decade, with a focus on 3D organoid systems and chimeric models being exploited for new therapeutic approaches.
Journal Article
Oncolytic virus therapy: A new era of cancer treatment at dawn
2016
Oncolytic virus therapy is perhaps the next major breakthrough in cancer treatment following the success in immunotherapy using immune checkpoint inhibitors. Oncolytic viruses are defined as genetically engineered or naturally occurring viruses that selectively replicate in and kill cancer cells without harming the normal tissues. T‐Vec (talimogene laherparepvec), a second‐generation oncolytic herpes simplex virus type 1 (HSV‐1) armed with GM‐CSF, was recently approved as the first oncolytic virus drug in the USA and Europe. The phase III trial proved that local intralesional injections with T‐Vec in advanced malignant melanoma patients can not only suppress the growth of injected tumors but also act systemically and prolong overall survival. Other oncolytic viruses that are closing in on drug approval in North America and Europe include vaccinia virus JX‐594 (pexastimogene devacirepvec) for hepatocellular carcinoma, GM‐CSF‐expressing adenovirus CG0070 for bladder cancer, and Reolysin (pelareorep), a wild‐type variant of reovirus, for head and neck cancer. In Japan, a phase II clinical trial of G47∆, a third‐generation oncolytic HSV‐1, is ongoing in glioblastoma patients. G47∆ was recently designated as a “Sakigake” breakthrough therapy drug in Japan. This new system by the Japanese government should provide G47∆ with priority reviews and a fast‐track drug approval by the regulatory authorities. Whereas numerous oncolytic viruses have been subjected to clinical trials, the common feature that is expected to play a major role in prolonging the survival of cancer patients is an induction of specific antitumor immunity in the course of tumor‐specific viral replication. It appears that it will not be long before oncolytic virus therapy becomes a standard therapeutic option for all cancer patients.
Oncolytic virus therapy is rapidly emerging as a new approach of cancer treatment. This review depicts this new trend of cancer therapy, in which the common feature that is expected to play a major role in prolonging the survival of cancer patients is an induction of specific antitumor immunity in the course of tumor specific viral replication. It is likely that cancer patients will be able to choose oncolytic virus therapy freely as a treatment option in the very near future.
Journal Article
Engineering adeno-associated viruses for clinical gene therapy
2014
Although gene delivery vectors based on adeno-associated viruses (AAVs) have emerged as safe and effective for numerous clinical gene therapy applications, many challenges remain. Recent advances in AAV vector development through rational design and directed evolution, as well as in the design of novel genetic cargoes, promise to extend clinical successes of AAV-mediated gene therapy.
Clinical gene therapy has been increasingly successful owing both to an enhanced molecular understanding of human disease and to progressively improving gene delivery technologies. Among these technologies, delivery vectors based on adeno-associated viruses (AAVs) have emerged as safe and effective and, in one recent case, have led to regulatory approval. Although shortcomings in viral vector properties will render extension of such successes to many other human diseases challenging, new approaches to engineer and improve AAV vectors and their genetic cargo are increasingly helping to overcome these barriers.
Journal Article
Lipid Nanoparticle Systems for Enabling Gene Therapies
by
Hope, Michael J.
,
Cullis, Pieter R.
in
Advantages
,
Amyloid Neuropathies, Familial - genetics
,
Amyloid Neuropathies, Familial - metabolism
2017
Genetic drugs such as small interfering RNA (siRNA), mRNA, or plasmid DNA provide potential gene therapies to treat most diseases by silencing pathological genes, expressing therapeutic proteins, or through gene-editing applications. In order for genetic drugs to be used clinically, however, sophisticated delivery systems are required. Lipid nanoparticle (LNP) systems are currently the lead non-viral delivery systems for enabling the clinical potential of genetic drugs. Application will be made to the Food and Drug Administration (FDA) in 2017 for approval of an LNP siRNA drug to treat transthyretin-induced amyloidosis, presently an untreatable disease. Here, we first review research leading to the development of LNP siRNA systems capable of silencing target genes in hepatocytes following systemic administration. Subsequently, progress made to extend LNP technology to mRNA and plasmids for protein replacement, vaccine, and gene-editing applications is summarized. Finally, we address current limitations of LNP technology as applied to genetic drugs and ways in which such limitations may be overcome. It is concluded that LNP technology, by virtue of robust and efficient formulation processes, as well as advantages in potency, payload, and design flexibility, will be a dominant non-viral technology to enable the enormous potential of gene therapy.
Genetic drugs based on RNA and DNA can potentially treat most diseases by silencing pathological genes, expressing therapeutic proteins, or by editing the human genome. This review summarizes progress made using lipid nanoparticle (LNP) formulations of genetic drugs to enable gene therapy to be practiced.
Journal Article
Targeting and engineering long non-coding RNAs for cancer therapy
2024
RNA therapeutics (RNATx) aim to treat diseases, including cancer, by targeting or employing RNA molecules for therapeutic purposes. Amongst the most promising targets are long non-coding RNAs (lncRNAs), which regulate oncogenic molecular networks in a cell type-restricted manner. lncRNAs are distinct from protein-coding genes in important ways that increase their therapeutic potential yet also present hurdles to conventional clinical development. Advances in genome editing, oligonucleotide chemistry, multi-omics and RNA engineering are paving the way for efficient and cost-effective lncRNA-focused drug discovery pipelines. In this Review, we present the emerging field of lncRNA therapeutics for oncology, with emphasis on the unique strengths and challenges of lncRNAs within the broader RNATx framework. We outline the necessary steps for lncRNA therapeutics to deliver effective, durable, tolerable and personalized treatments for cancer.Therapeutics that target long non-coding RNAs (lncRNAs) are promising treatments for cancer. In this Review, the authors discuss how technological advances have helped improve drug discovery pipelines for lncRNAs and overview their strengths and challenges as oncological therapeutics.
Journal Article
In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration
2016
A method for CRISPR-based genome editing that harnesses cellular non-homologous end joining activity to achieve targeted DNA knock-in in non-dividing tissues.
A novel method for knock-in gene integration
A current challenge in genome editing is achieving efficient targeted integration of transgenes in post-mitotic cells. These authors develop a method for CRISPR-based genome editing that harnesses the non-homologous-end-joining double-strand-break repair pathway to achieve targeted knock-in in dividing and non-dividing tissues. Although further development is needed to increase efficacy, the authors show the potential application of this method for targeted knock-in in post-mitotic neurons and other non-dividing tissues, and provide initial exploratory data on its potential application for disease correction in retinal pigment epithelium models.
Targeted genome editing via engineered nucleases is an exciting area of biomedical research and holds potential for clinical applications. Despite rapid advances in the field,
in vivo
targeted transgene integration is still infeasible because current tools are inefficient
1
, especially for non-dividing cells, which compose most adult tissues. This poses a barrier for uncovering fundamental biological principles and developing treatments for a broad range of genetic disorders
2
. Based on clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9)
3
,
4
technology, here we devise a homology-independent targeted integration (HITI) strategy, which allows for robust DNA knock-in in both dividing and non-dividing cells
in vitro
and, more importantly,
in vivo
(for example, in neurons of postnatal mammals). As a proof of concept of its therapeutic potential, we demonstrate the efficacy of HITI in improving visual function using a rat model of the retinal degeneration condition retinitis pigmentosa. The HITI method presented here establishes new avenues for basic research and targeted gene therapies.
Journal Article