Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
14 result(s) for "Genetic engineering Handbooks, manuals, etc."
Sort by:
Handbook of vegetables and vegetable processing
Handbook of Vegetables and Vegetable Processing, Second Edition is the most comprehensive guide on vegetable technology for processors, producers, and users of vegetables in food manufacturing.This complete handbook contains 42 chapters across two volumes, contributed by field experts from across the world. It provides contemporary information that brings together current knowledge and practices in the value-chain of vegetables from production through consumption. The book is unique in the sense that it includes coverage of production and postharvest technologies, innovative processing technologies, packaging, and quality management. Handbook of Vegetables and Vegetable Processing, Second Edition covers recent developments in the areas of vegetable breeding and production, postharvest physiology and storage, packaging and shelf life extension, and traditional and novel processing technologies (high-pressure processing, pulse-electric field, membrane separation, and ohmic heating). It also offers in-depth coverage of processing, packaging, and the nutritional quality of vegetables as well as information on a broader spectrum of vegetable production and processing science and technology. Coverage includes biology and classification, physiology, biochemistry, flavor and sensory properties, microbial safety and HACCP principles, nutrient and bioactive properties In-depth descriptions of key processes including, minimal processing, freezing, pasteurization and aseptic processing, fermentation, drying, packaging, and application of new technologies Entire chapters devoted to important aspects of over 20 major commercial vegetables including avocado, table olives, and textured vegetable proteins This important book will appeal to anyone studying or involved in food technology, food science, food packaging, applied nutrition, biosystems and agricultural engineering, biotechnology, horticulture, food biochemistry, plant biology, and postharvest physiology.
Molecular biology techniques : a classroom laboratory manual
This manual is an indispensable tool for introducing advanced undergraduates and beginning graduate students to the techniques of recombinant DNA technology, or gene cloning and expression. The techniques used in basic research and biotechnology laboratories are covered in detail. Students gain hands-on experience from start to finish in subcloning a gene into an expression vector, through purification of the recombinant protein.The third edition has been completely re-written, with new laboratory exercises and all new illustrations and text, designed for a typical 15-week semester, rather than a 4-week intensive course. The \"project\" approach to experiments was maintained: students still follow a cloning project through to completion, culminating in the purification of recombinant protein. It takes advantage of the enhanced green fluorescent protein-students can actually visualize positive clones following IPTG induction. *Cover basic concepts and techniques used in molecular biology research labs*Student-tested labs proven successful in a real classroom laboratories*Exercises simulate a cloning project that would be performed in a real research lab*\"Project\" approach to experiments gives students an overview of the entire process*Prep-list appendix contains necessary recipes and catalog numbers, providing staff with detailed instructions
The handbook of nanomedicine
Nanomedicine is defined as the application of nanobiotechnology in clinical medicine, which is currently being used to research the pathomechanism of disease, refine molecular diagnostics, and aid in the discovery, development, and delivery of drugs.
Handbook of industrial chemistry and biotechnology
Provides a wealth of information and guidance on industrial chemistry and biotechnology. Industries covered span the spectrum from salt and soda ash to advanced dyes chemistry, the nuclear industry, the rapidly evolving biotechnology industry, and, most recently, electrochemical energy storage devices and fuel cell science and technology. Other topics of surpassing interest to the world at large are covered in chapters on fertilizers and food production, pesticide manufacture and use, and the principles of sustainable chemical practice, referred to as green chemistry.
Extended-nanofluidic systems for chemistry and biotechnology
For the past decade, new research fields utilizing microfluidics have been formed. General micro-integration methods were proposed, and the supporting fundamental technologies were widely developed. These methodologies have made various applications in the fields of analytical and chemical synthesis, and their superior performances such as rapid, simple, and high efficient processing have been proved. Recently, the space is further downscaling to 101–103nm scale (we call the space extended-nano space). The extended-nano space located between the conventional nanotechnology (100–101nm) and microtechnology (>1μm), and the research tools are not well established. In addition, the extended-nano space is a transient space from single molecules to bulk condensed phase, and fluidics and chemistry are not unknown. For these purposes, basic methodologies were developed, and new specific phenomena in fluidics and chemistry were found. These new phenomena were applied to unique chemical operations such as concentration and ion selection. The new research fields which are now being created are quite different from those in microspace. Unique devices are also increasingly being reported. In this book, we describe the fundamental technologies for extended-nano space and show the unique liquid properties found in this space and applications for single molecule or cell analysis.
Microfluidics and Nanofluidics Handbook
This comprehensive handbook presents fundamental aspects, fabrication techniques, introductory materials on microbiology and chemistry, measurement techniques, and applications of microfluidics and nanofluidics. The second volume focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals.
Biotechnology : a laboratory course
The objectives of this Second Edition of Biotechnology: A Laboratory Course remain unchanged: to create a text that consists of a series of laboratory exercises that integrate molecular biology with protein biochemistry techniques while providing a continuum of experiments. The course begins with basic techniques and culminates in the utilization of previously acquired technical experience and experimental material. Two organisms, Sacchaomyces cerevisiae and Escherichia coli, a single plasmid, and a single enzyme are the experimental material, yet the procedures and principles demonstrated are widely applicable to other systems. This text will serve as an excellent aid in the establishment or instruction of introductory courses in the biological sciences. Key Features of this new edition:* All exercises and appendixes have been updated* Includes new exercises on* Polymerase chain reaction* Beta-Galactosidase detection in yeast colonies* Western blotting* New procedures introduced for* Large-scale plasmid isolation* Yeast transformation* DNA quantitation* New appendixes added, one of which provides details on accessing biological information sites on the Internet (World Wide Web)* Use of non-radioactive materials and easy access to microbial cultures* Laboratory exercises student tested for seven years
Making Girls and Boys
What is it that makes a person a boy or a girl? From our cradles to our graves, a pair of letters, either XX or XY, will define much of our lives. \"It's a girl!\" or \"It's a boy!\" will be the first label applied to us, the first thing said about who we are as an individual. For every person in every society, gender has a fundamental affect on what we choose, how we live, and how we think about the world and how the world sees us. Sex is one of the most powerfully defining concepts that we have.