Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
61,447 result(s) for "Genetic hybridization"
Sort by:
HOW COMMON IS HOMOPLOID HYBRID SPECIATION?
Hybridization has long been considered a process that prevents divergence between species. In contrast to this historical view, an increasing number of empirical studies claim to show evidence for hybrid speciation without a ploidy change. However, the importance of hybridization as a route to speciation is poorly understood, and many claims have been made with insufficient evidence that hybridization played a role in the speciation process. We propose criteria to determine the strength of evidence for homoploid hybrid speciation. Based on an evaluation of the literature using this framework, we conclude that although hybridization appears to be common, evidence for an important role of hybridization in homoploid speciation is more circumscribed.
Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity
The global genetic diversity of cassava and related Manihot species is revealed by sequencing of 53 cultivated and wild accessions and genotyping of 268 African cassavas, providing a vital resource for breeding. Cassava ( Manihot esculenta ) provides calories and nutrition for more than half a billion people. It was domesticated by native Amazonian peoples through cultivation of the wild progenitor M. esculenta ssp. flabellifolia and is now grown in tropical regions worldwide. Here we provide a high-quality genome assembly for cassava with improved contiguity, linkage, and completeness; almost 97% of genes are anchored to chromosomes. We find that paleotetraploidy in cassava is shared with the related rubber tree Hevea , providing a resource for comparative studies. We also sequence a global collection of 58 Manihot accessions, including cultivated and wild cassava accessions and related species such as Ceará or India rubber ( M. glaziovii ), and genotype 268 African cassava varieties. We find widespread interspecific admixture, and detect the genetic signature of past cassava breeding programs. As a clonally propagated crop, cassava is especially vulnerable to pathogens and abiotic stresses. This genomic resource will inform future genome-enabled breeding efforts to improve this staple crop.
Historical introgression among the American live oaks and the comparative nature of tests for introgression
Introgressive hybridization challenges the concepts we use to define species and infer phylogenetic relationships. Methods for inferring historical introgression from the genomes of extant species, such as ABBA-BABA tests, are widely used, however, their results can be easily misinterpreted. Because these tests are inherently comparative, they are sensitive to the effects of missing data (unsampled species) and nonindependence (hierarchical relationships among species). We demonstrate this using genomic RADseq data sampled from all extant species in the American live oaks (Quercus series Virentes), a group notorious for hybridization. By considering all species and their phylogenetic relationships, we were able to distinguish true hybridizing lineages from those that falsely appear admixed. Six of seven species show evidence of admixture, often with multiple other species, but which is explained by introgression among a few related lineages occurring in close proximity. We identify the Cuban oak as the most admixed lineage and test alternative scenarios for its origin. The live oaks form a continuous ring-like distribution around the Gulf of Mexico, connected in Cuba, across which they could effectively exchange alleles. However, introgression appears highly localized, suggesting that oak species boundaries and their geographic ranges have remained relatively stable over evolutionary time.
Back to the wilds: Tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives
The genetic diversity of our crop plants has been substantially reduced during the process of domestication and breeding. This reduction in diversity necessarily constrains our ability to expand a crop’s range of cultivation into environments that are more extreme than those in which it was domesticated, including into “sustainable” agricultural systems with reduced inputs of pesticides, water, and fertilizers. Conversely, the wild progenitors of crop plants typically possess high levels of genetic diversity, which underlie an expanded (relative to domesticates) range of adaptive traits that may be of agricultural relevance, including resistance to pests and pathogens, tolerance to abiotic extremes, and reduced dependence on inputs. Despite their clear potential for crop improvement, wild relatives have rarely been used systematically for crop improvement, and in no cases, have full sets of wild diversity been introgressed into a crop. Instead, most breeding efforts have focused on specific traits and dealt with wild species in a limited and typically ad hoc manner. Although expedient, this approach misses the opportunity to test a large suite of traits and deploy the full potential of crop wild relatives in breeding for the looming challenges of the 21st century. Here we review examples of hybridization in several species, both intentionally produced and naturally occurring, to illustrate the gains that are possible. We start with naturally occurring hybrids, and then examine a range of examples of hybridization in agricultural settings.
role of homoploid hybridization in evolution: A century of studies synthesizing genetics and ecology
While homoploid hybridization was viewed as maladaptive by zoologists, the possibility that it might play a creative role in evolution was explored and debated by botanists during the evolutionary synthesis. Owing to his synthetic work on the ecological and genetic factors influencing the occurrence and effects of hybridization, G. Ledyard Stebbins’ contributions to this debate were particularly influential. We revisit Stebbins’ views on the frequency of hybridization, the evolution of hybrid sterility, and the evolutionary importance of transgressive segregation, introgression, and homoploid hybrid speciation in the context of contemporary evidence. Floristic surveys indicate that ∼10% of plant species hybridize, suggesting that natural hybridization is not as ubiquitous as Stebbins argued. There is stronger support for his contention that chromosomal sterility is of greater importance in plants than in animals and that selection drives the evolution of hybrid sterility. Stebbins’ assertions concerning the frequent occurrence of transgressive segregation and introgressive hybridization have been confirmed by contemporary work, but few studies directly link these phenomena to adaptive evolution or speciation. Stebbins proposed a mechanism by which chromosomal rearrangements partially isolate hybrid lineages and parental species, which spurred the development of the recombinational model of homoploid speciation. While this model has been confirmed empirically, the establishment of reproductively independent hybrid lineages is typically associated with the development of both intrinsic and extrinsic reproductive barriers. We conclude by reflecting on outcomes of hybridization not considered by Stebbins and on possible future research that may extend our understanding of the evolutionary role of hybridization beyond Stebbins’ legacy.
Pollinator-Mediated Selection on Flower Color Allele Drives Reinforcement
Reinforcement is the process by which reduced hybrid fitness generates selection favoring the evolution of stronger prezygotic reproductive barriers between emerging species. Using common-garden field experiments, we quantified the strength of reinforcing selection in nature by demonstrating strong selection favoring an alíele conferring increased pigment intensity in the plant Phlox drummondii in areas of sympatry with the closely related species Phlox cuspidata. Incomplete hybrid sterility between the two species generates selection for traits that decrease interspecies hybridization. In contrast, selection on this locus is undetectable in the absence of P. cuspidata. We demonstrate that reinforcing selection is generated by nonrandom pollinator movement in which pollinators move less frequently between intensely pigmented P. drummondii and P. cuspidata than between lightly pigmented P. drummondii and P. cuspidata.
Whole-genome sequence of the bovine blood fluke Schistosoma bovis supports interspecific hybridization with S. haematobium
Mesenteric infection by the parasitic blood fluke Schistosoma bovis is a common veterinary problem in Africa and the Middle East and occasionally in the Mediterranean Region. The species also has the ability to form interspecific hybrids with the human parasite S. haematobium with natural hybridisation observed in West Africa, presenting possible zoonotic transmission. Additionally, this exchange of alleles between species may dramatically influence disease dynamics and parasite evolution. We have generated a 374 Mb assembly of the S. bovis genome using Illumina and PacBio-based technologies. Despite infecting different hosts and organs, the genome sequences of S. bovis and S. haematobium appeared strikingly similar with 97% sequence identity. The two species share 98% of protein-coding genes, with an average sequence identity of 97.3% at the amino acid level. Genome comparison identified large continuous parts of the genome (up to several 100 kb) showing almost 100% sequence identity between S. bovis and S. haematobium. It is unlikely that this is a result of genome conservation and provides further evidence of natural interspecific hybridization between S. bovis and S. haematobium. Our results suggest that foreign DNA obtained by interspecific hybridization was maintained in the population through multiple meiosis cycles and that hybrids were sexually reproductive, producing viable offspring. The S. bovis genome assembly forms a highly valuable resource for studying schistosome evolution and exploring genetic regions that are associated with species-specific phenotypic traits.
Construction of a multicontrol sterility system for a maize male‐sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD‐finger transcription factor
Summary Although hundreds of genetic male sterility (GMS) mutants have been identified in maize, few are commercially used due to a lack of effective methods to produce large quantities of pure male‐sterile seeds. Here, we develop a multicontrol sterility (MCS) system based on the maize male sterility 7 (ms7) mutant and its wild‐type Zea mays Male sterility 7 (ZmMs7) gene via a transgenic strategy, leading to the utilization of GMS in hybrid seed production. ZmMs7 is isolated by a map‐based cloning approach and encodes a PHD‐finger transcription factor orthologous to rice PTC1 and Arabidopsis MS1. The MCS transgenic maintainer lines are developed based on the ms7‐6007 mutant transformed with MCS constructs containing the (i) ZmMs7 gene to restore fertility, (ii) α‐amylase gene ZmAA and/or (iii) DNA adenine methylase gene Dam to devitalize transgenic pollen, (iv) red fluorescence protein gene DsRed2 or mCherry to mark transgenic seeds and (v) herbicide‐resistant gene Bar for transgenic seed selection. Self‐pollination of the MCS transgenic maintainer line produces transgenic red fluorescent seeds and nontransgenic normal colour seeds at a 1:1 ratio. Among them, all the fluorescent seeds are male fertile, but the seeds with a normal colour are male sterile. Cross‐pollination of the transgenic plants to male‐sterile plants propagates male‐sterile seeds with high purity. Moreover, the transgene transmission rate through pollen of transgenic plants harbouring two pollen‐disrupted genes is lower than that containing one pollen‐disrupted gene. The MCS system has great potential to enhance the efficiency of maize male‐sterile line propagation and commercial hybrid seed production.
Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation
Species are generally viewed by evolutionists as 'real' distinct entities in nature, making speciation appear difficult. Charles Darwin had originally promoted a very different uniformitarian view that biological species were continuous with 'varieties' below the level of species and became distinguishable from them only when divergent natural selection led to gaps in the distribution of morphology. This Darwinian view on species came under immediate attack, and the consensus among evolutionary biologists today appears to side more with the ideas of Ernst Mayr and Theodosius Dobzhansky, who argued 70 years ago that Darwin was wrong about species. Here, I show how recent genetic studies of supposedly well-behaved animals, such as insects and vertebrates, including our own species, have supported the existence of the Darwinian continuum between varieties and species. Below the level of species, there are well-defined ecological races, while above the level of species, hybridization still occurs, and may often lead to introgression and, sometimes, hybrid speciation. This continuum is evident, not only across vast geographical regions, but also locally in sympatry. The existence of this continuum provides good evidence for gradual evolution of species from ecological races and biotypes, to hybridizing species and, ultimately, to species that no longer cross. Continuity between varieties and species not only provides an excellent argument against creationism, but also gives insight into the process of speciation. The lack of a hiatus between species and ecological races suggests that speciation may occur, perhaps frequently, in sympatry, and the abundant intermediate stages suggest that it is happening all around us. Speciation is easy!
Negligible nuclear introgression despite complete mitochondrial capture between two species of chipmunks
The idea that species boundaries can be semipermeable to gene flow is now widely accepted but the evolutionary importance of introgressive hybridization remains unclear. Here we examine the genomic contribution of gene flow between two hybridizing chipmunk species, Tamias ruficaudus and T. amoenus. Previous studies have shown that ancient hybridization has resulted in complete fixation of introgressed T. ruficaudus mitochondrial DNA (mtDNA) in some populations of T. amoenus, but the extent of nuclear introgression is not known. We used targeted capture to sequence over 10,500 gene regions from multiple individuals of both species. We found that most of the nuclear genome is sorted between these species and that overall genealogical patterns do not show evidence for introgression. Our analysis rules out all but very minor levels of interspecific gene flow, indicating that introgressive hybridization has had little impact on the overall genetic composition of these species outside of the mitochondrial genome. Given that much of the evidence for introgression in animals has come from mtDNA, our results underscore that unraveling the importance introgressive hybridization during animal speciation will require a genome-wide perspective that is still absent for many species.