Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,532
result(s) for
"Genetic suppression"
Sort by:
Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss
2019
RNA editing enzyme ADAR1 is a therapeutic vulnerability in tumors with constitutive cell-autonomous production of interferon-stimulated genes
Journal Article
Systematic analysis of bypass suppression of essential genes
2020
Essential genes tend to be highly conserved across eukaryotes, but, in some cases, their critical roles can be bypassed through genetic rewiring. From a systematic analysis of 728 different essential yeast genes, we discovered that 124 (17%) were dispensable essential genes. Through whole‐genome sequencing and detailed genetic analysis, we investigated the genetic interactions and genome alterations underlying bypass suppression. Dispensable essential genes often had paralogs, were enriched for genes encoding membrane‐associated proteins, and were depleted for members of protein complexes. Functionally related genes frequently drove the bypass suppression interactions. These gene properties were predictive of essential gene dispensability and of specific suppressors among hundreds of genes on aneuploid chromosomes. Our findings identify yeast's core essential gene set and reveal that the properties of dispensable essential genes are conserved from yeast to human cells, correlating with human genes that display cell line‐specific essentiality in the Cancer Dependency Map (DepMap) project.
Synopsis
A systematic analysis of 728 different essential yeast genes identifies 124 (17%) dispensable essential genes. Whole‐genome sequencing is used to identify the genome alterations underlying the bypass suppression.
Dispensable essential genes show distinct properties that can be used to predict essential gene dispensability and are conserved from yeast to human cells.
Bypass suppressors often show a strong functional connection to the dispensable essential gene, which can be used to predict suppressor genes.
Dispensable essential genes can generally only be suppressed by a single genetic mechanism, including aneuploidies and mutations in specific suppressor genes, which involve both loss‐of-function and gain‐of-function alleles.
A list of 805 core essential genes is defined that are either absolutely required for cell viability in yeast or only suppressed by highly complex genetic mechanisms.
Graphical Abstract
A systematic analysis of 728 different essential yeast genes identifies 124 (17%) dispensable essential genes. Whole‐genome sequencing is used to identify the genome alterations underlying the bypass suppression.
Journal Article
The Phosphate Transporter Gene OsPht1;8 Is Involved in Phosphate Homeostasis in Rice
2011
Plant phosphate transporters (PTs) are active in the uptake of inorganic phosphate (Pi) from the soil and its translocation within the plant. Here, we report on the biological properties and physiological roles of OsPht1;8 (OsPT8), one of the PTs belonging to the Pht1 family in rice (Oryza sativa). Expression of a β-glucuronidase and green fluorescent protein reporter gene driven by the OsPT8 promoter showed that OsPT8 is expressed in various tissue organs from roots to seeds independent of Pi supply. OsPT8 was able to complement a yeast Pi-uptake mutant and increase Pi accumulation of Xenopus laevis oocytes when supplied with micromolar ³³Pi concentrations at their external solution, indicating that it has a high affinity for Pi transport. Overexpression of OsPT8 resulted in excessive Pi in both roots and shoots and Pi toxic symptoms under the high-Pi supply condition. In contrast, knockdown of OsPT8 by RNA interference decreased Pi uptake and plant growth under both high-and low-Pi conditions. Moreover, OsPT8 suppression resulted in an increase of phosphorus content in the panicle axis and in a decrease of phosphorus content in unfilled grain hulls, accompanied by lower seed-setting rate. Altogether, our data suggest that OsPT8 is involved in Pi homeostasis in rice and is critical for plant growth and development.
Journal Article
Emerging Personalized Opportunities for Enhancing Translational Readthrough in Rare Genetic Diseases and Beyond
by
Zandanell, Johanna
,
Wagner, Roland N.
,
Bauer, Johann W.
in
Accuracy
,
Amino acids
,
Aminoglycosides
2023
Nonsense mutations trigger premature translation termination and often give rise to prevalent and rare genetic diseases. Consequently, the pharmacological suppression of an unscheduled stop codon represents an attractive treatment option and is of high clinical relevance. At the molecular level, the ability of the ribosome to continue translation past a stop codon is designated stop codon readthrough (SCR). SCR of disease-causing premature termination codons (PTCs) is minimal but small molecule interventions, such as treatment with aminoglycoside antibiotics, can enhance its frequency. In this review, we summarize the current understanding of translation termination (both at PTCs and at cognate stop codons) and highlight recently discovered pathways that influence its fidelity. We describe the mechanisms involved in the recognition and readthrough of PTCs and report on SCR-inducing compounds currently explored in preclinical research and clinical trials. We conclude by reviewing the ongoing attempts of personalized nonsense suppression therapy in different disease contexts, including the genetic skin condition epidermolysis bullosa.
Journal Article
GUN4-Porphyrin Complexes Bind the ChlH/GUN5 Subunit of Mg-Chelatase and Promote Chlorophyll Biosynthesis in Arabidopsis
by
Adhikari, Neil D.
,
Buck, Stephanie M.
,
Larkin, Robert M.
in
Alleles
,
Arabidopsis
,
Arabidopsis - drug effects
2011
The GENOMES UNCOUPLED4 (GUN4) protein stimulates chlorophyll biosynthesis by activating Mg-chelatase, the enzyme that commits protoporphyrin IX to chlorophyll biosynthesis. This stimulation depends on GUN4 binding the ChlH subunit of Mg-chelatase and the porphyrin substrate and product of Mg-chelatase. After binding porphyrins, GUN4 associates more stably with chloroplast membranes and was proposed to promote interactions between ChlH and chloroplast membranes—the site of Mg-chelatase activity. GUN4 was also proposed to attenuate the production of reactive oxygen species (ROS) by binding and shielding light-exposed porphyrins from collisions with O2. To test these proposals, we first engineered Arabidopsis thaliana plants that express only porphyrin binding–deficient forms of GUN4. Using these transgenic plants and particular mutants, we found that the porphyrin binding activity of GUN4 and Mg-chelatase contribute to the accumulation of chlorophyll, GUN4, and Mg-chelatase subunits. Also, we found that the porphyrin binding activity of GUN4 and Mg-chelatase affect the associations of GUN4 and ChlH with chloroplast membranes and have various effects on the expression of ROS-inducible genes. Based on our findings, we conclude that ChlH and GUN4 use distinct mechanisms to associate with chloroplast membranes and that mutant alleles of GUN4 and Mg-chelatase genes cause sensitivity to intense light by a mechanism that is potentially complex.
Journal Article
Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit
by
Cui, Mengmeng
,
Leng, Ping
,
Sun, Liang
in
abscisic acid
,
Abscisic Acid - metabolism
,
Abscisic Acid - pharmacology
2012
Abscisic acid (ABA) plays important roles during tomato fruit ripening. To study the regulation of carotenoid biosynthesis by ABA, the SlNCED1 gene encoding 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the ABA biosynthesis, was suppressed in tomato plants by transformation with an RNA interference (RNAi) construct driven by a fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20-50% of that in control fruit. This significant reduction in NCED activity led to the carbon that normally channels to free ABA as well as the ABA metabolite accumulation during ripening to be partially blocked. Therefore, this 'backlogged' carbon transformed into the carotenoid pathway in the RNAi lines resulted in increased assimilation and accumulation of upstream compounds in the pathway, chiefly lycopene and β-carotene. Fruit of all RNAi lines displayed deep red coloration compared with the pink colour of control fruit. The decrease in endogenous ABA in these transgenics resulted in an increase in ethylene, by increasing the transcription of genes related to the synthesis of ethylene during ripening. In conclusion, ABA potentially regulated the degree of pigmentation and carotenoid composition during ripening and could control, at least in part, ethylene production and action in climacteric tomato fruit.
Journal Article
SR1, a Calmodulin-Binding Transcription Factor, Modulates Plant Defense and Ethylene-Induced Senescence by Directly Regulating NDR1 and EIN3
by
Nie, Haozhen
,
Zhao, Chunzhao
,
Wu, Guangheng
in
Amino Acid Sequence
,
Apoptosis Regulatory Proteins
,
Apoptosis Regulatory Proteins - metabolism
2012
Plant defense responses are tightly controlled by many positive and negative regulators to cope with attacks from various pathogens. Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE2 (EDR2) is a negative regulator of powdery mildew resistance, and edr2 mutants display enhanced resistance to powdery mildew (Golovinomyces cichoracearum). To identify components acting in the EDR2 pathway, we screened for edr2 suppressors and identified a gain-of-function mutation in SIGNAL RESPONSIVE1 (SR1), which encodes a calmodulin-binding transcription activator. The sr1-4D gain-of-function mutation suppresses all edr2-associated phenotypes, including powdery mildew resistance, mildew-induced cell death, and ethylene-induced senescence. The sr1-4D single mutant is more susceptible to a Pseudomonas syringae pv tomato DC3000 virulent strain and to avirulent strains carrying avrRpt2 or avrRPS4 than the wild type. We show that SR1 directly binds to the promoter region of NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), a key component in RESISTANCE TO PSEUDOMONAS SYRINGAE2-mediated plant immunity. Also, the ndr1 mutation suppresses the sr1-1 null allele, which shows enhanced resistance to both P. syringae pv tomato DC3000 avrRpt2 and G. cichoracearum. In addition, we show that SRI regulates ethylene-induced senescence by directly binding to the ETHYLENE INSENSITIVE3 (EIN3) promoter region in vivo. Enhanced ethylene-induced senescence in sr1-1 is suppressed by ein3. Our data indicate that SR1 plays an important role in plant immunity and ethylene signaling by directly regulating NDR1 and EIN3.
Journal Article
Suppressor mutations in ribosomal proteins and FliY restore Bacillus subtilis swarming motility in the absence of EF-P
by
Kearns, Daniel B.
,
Hummels, Katherine R.
in
Acids
,
Bacillus subtilis
,
Bacillus subtilis - genetics
2019
Translation elongation factor P (EF-P) alleviates ribosome pausing at a subset of motifs encoding consecutive proline residues, and is required for growth in many organisms. Here we show that Bacillus subtilis EF-P also alleviates ribosome pausing at sequences encoding tandem prolines and ribosomes paused within several essential genes without a corresponding growth defect in an efp mutant. The B. subtilis efp mutant is instead impaired for flagellar biosynthesis which results in the abrogation of a form of motility called swarming. We isolate swarming suppressors of efp and identify mutations in 8 genes that suppressed the efp mutant swarming defect, many of which encode conserved ribosomal proteins or ribosome-associated factors. One mutation abolished a translational pause site within the flagellar C-ring component FliY to increase flagellar number and restore swarming motility in the absence of EF-P. Our data support a model wherein EF-P-alleviation of ribosome pausing may be particularly important for macromolecular assemblies like the flagellum that require precise protein stoichiometries.
Journal Article
CFTR trafficking mutations disrupt cotranslational protein folding by targeting biosynthetic intermediates
2020
Protein misfolding causes a wide spectrum of human disease, and therapies that target misfolding are transforming the clinical care of cystic fibrosis. Despite this success, however, very little is known about how disease-causing mutations affect the de novo folding landscape. Here we show that inherited, disease-causing mutations located within the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) have distinct effects on nascent polypeptides. Two of these mutations (A455E and L558S) delay compaction of the nascent NBD1 during a critical window of synthesis. The observed folding defect is highly dependent on nascent chain length as well as its attachment to the ribosome. Moreover, restoration of the NBD1 cotranslational folding defect by second site suppressor mutations also partially restores folding of full-length CFTR. These findings demonstrate that nascent folding intermediates can play an important role in disease pathogenesis and thus provide potential targets for pharmacological correction.
Cystic fibrosis (CF) is a lethal genetic disease that is primarily caused by misfolding of the cystic fibrosis transmembrane conductance regulator (CFTR). Here authors show that disease-causing mutations located within the first nucleotide binding domain of CFTR have distinct effects on nascent polypeptides.
Journal Article
Mechanistic insights into global suppressors of protein folding defects
2022
Most amino acid substitutions in a protein either lead to partial loss-of-function or are near neutral. Several studies have shown the existence of second-site mutations that can rescue defects caused by diverse loss-of-function mutations. Such global suppressor mutations are key drivers of protein evolution. However, the mechanisms responsible for such suppression remain poorly understood. To address this, we characterized multiple suppressor mutations both in isolation and in combination with inactive mutants. We examined six global suppressors of the bacterial toxin CcdB, the known M182T global suppressor of TEM-1 β-lactamase, the N239Y global suppressor of p53-DBD and three suppressors of the SARS-CoV-2 spike Receptor Binding Domain. When coupled to inactive mutants, they promote increased
in-vivo
solubilities as well as regain-of-function phenotypes. In the case of CcdB, where novel suppressors were isolated, we determined the crystal structures of three such suppressors to obtain insight into the specific molecular interactions responsible for the observed effects. While most individual suppressors result in small stability enhancements relative to wildtype, which can be combined to yield significant stability increments, thermodynamic stabilisation is neither necessary nor sufficient for suppressor action. Instead, in diverse systems, we observe that individual global suppressors greatly enhance the foldability of buried site mutants, primarily through increase in refolding rate parameters measured
in vitro
. In the crowded intracellular environment, mutations that slow down folding likely facilitate off-pathway aggregation. We suggest that suppressor mutations that accelerate refolding can counteract this, enhancing the yield of properly folded, functional protein
in vivo
.
Journal Article