Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7,611
result(s) for
"Genomic libraries"
Sort by:
A Dual Barcoding Approach to Bacterial Strain Nomenclature: Genomic Taxonomy of Klebsiella pneumoniae Strains
by
Bridel, Sébastien
,
Brisse, Sylvain
,
Guglielmini, Julien
in
Analysis
,
Bacterial pneumonia
,
Bar codes
2022
Abstract
Sublineages (SLs) within microbial species can differ widely in their ecology and pathogenicity, and their precise definition is important in basic research and for industrial or public health applications. Widely accepted strategies to define SLs are currently missing, which confuses communication in population biology and epidemiological surveillance. Here, we propose a broadly applicable genomic classification and nomenclature approach for bacterial strains, using the prominent public health threat Klebsiella pneumoniae as a model. Based on a 629-gene core genome multilocus sequence typing (cgMLST) scheme, we devised a dual barcoding system that combines multilevel single linkage (MLSL) clustering and life identification numbers (LINs). Phylogenetic and clustering analyses of >7,000 genome sequences captured population structure discontinuities, which were used to guide the definition of 10 infraspecific genetic dissimilarity thresholds. The widely used 7-gene multilocus sequence typing (MLST) nomenclature was mapped onto MLSL SLs (threshold: 190 allelic mismatches) and clonal group (threshold: 43) identifiers for backwards nomenclature compatibility. The taxonomy is publicly accessible through a community-curated platform (https://bigsdb.pasteur.fr/klebsiella), which also enables external users’ genomic sequences identification. The proposed strain taxonomy combines two phylogenetically informative barcode systems that provide full stability (LIN codes) and nomenclatural continuity with previous nomenclature (MLSL). This species-specific dual barcoding strategy for the genomic taxonomy of microbial strains is broadly applicable and should contribute to unify global and cross-sector collaborative knowledge on the emergence and microevolution of bacterial pathogens.
Journal Article
Scalable Design of Paired CRISPR Guide RNAs for Genomic Deletion
by
Ponomarenko, Julia
,
Palumbo, Emilio
,
Polidori, Taisia
in
Bioinformatics
,
Biology and Life Sciences
,
CRISPR
2017
CRISPR-Cas9 technology can be used to engineer precise genomic deletions with pairs of single guide RNAs (sgRNAs). This approach has been widely adopted for diverse applications, from disease modelling of individual loci, to parallelized loss-of-function screens of thousands of regulatory elements. However, no solution has been presented for the unique bioinformatic design requirements of CRISPR deletion. We here present CRISPETa, a pipeline for flexible and scalable paired sgRNA design based on an empirical scoring model. Multiple sgRNA pairs are returned for each target, and any number of targets can be analyzed in parallel, making CRISPETa equally useful for focussed or high-throughput studies. Fast run-times are achieved using a pre-computed off-target database. sgRNA pair designs are output in a convenient format for visualisation and oligonucleotide ordering. We present pre-designed, high-coverage library designs for entire classes of protein-coding and non-coding elements in human, mouse, zebrafish, Drosophila melanogaster and Caenorhabditis elegans. In human cells, we reproducibly observe deletion efficiencies of ≥50% for CRISPETa designs targeting an enhancer and exonic fragment of the MALAT1 oncogene. In the latter case, deletion results in production of desired, truncated RNA. CRISPETa will be useful for researchers seeking to harness CRISPR for targeted genomic deletion, in a variety of model organisms, from single-target to high-throughput scales.
Journal Article
Protocol variations in run-on transcription dataset preparation produce detectable signatures in sequencing libraries
by
Sigauke, Rutendo F.
,
Hunter, Samuel
,
Dowell, Robin D.
in
Animal Genetics and Genomics
,
Biomedical and Life Sciences
,
Data entry
2022
Background
A variety of protocols exist for producing whole genome run-on transcription datasets. However, little is known about how differences between these protocols affect the signal within the resulting libraries.
Results
Using run-on transcription datasets generated from the same biological system, we show that a variety of GRO- and PRO-seq preparation methods leave identifiable signatures within each library. Specifically we show that the library preparation method results in differences in quality control metrics, as well as differences in the signal distribution at the 5
′
end of transcribed regions. These shifts lead to disparities in eRNA identification, but do not impact analyses aimed at inferring the key regulators involved in changes to transcription.
Conclusions
Run-on sequencing protocol variations result in technical signatures that can be used to identify both the enrichment and library preparation method of a particular data set. These technical signatures are batch effects that limit detailed comparisons of pausing ratios and eRNAs identified across protocols. However, these batch effects have only limited impact on our ability to infer which regulators underlie the observed transcriptional changes.
Journal Article
Sequencing and Analysis of Neanderthal Genomic DNA
by
Kudaravalli, Sridhar
,
Smith, Doug
,
Krause, Johannes
in
Animals
,
Biological Evolution
,
Bone and Bones
2006
Our knowledge of Neanderthals is based on a limited number of remains and artifacts from which we must make inferences about their biology, behavior, and relationship to ourselves. Here, we describe the characterization of these extinct hominids from a new perspective, based on the development of a Neanderthal metagenomic library and its high-throughput sequencing and analysis. Several lines of evidence indicate that the 65,250 base pairs of hominid sequence so far identified in the library are of Neanderthal origin, the strongest being the ascertainment of sequence identities between Neanderthal and chimpanzee at sites where the human genomic sequence is different. These results enabled us to calculate the human-Neanderthal divergence time based on multiple randomly distributed autosomal loci. Our analyses suggest that on average the Neanderthal genomic sequence we obtained and the reference human genome sequence share a most recent common ancestor ~706,000 years ago, and that the human and Neanderthal ancestral populations split ~370,000 years ago, before the emergence of anatomically modern humans. Our finding that the Neanderthal and human genomes are at least 99.5% identical led us to develop and successfully implement a targeted method for recovering specific ancient DNA sequences from metagenomic libraries. This initial analysis of the Neanderthal genome advances our understanding of the evolutionary relationship of Homo sapiens and Homo neanderthalensis and signifies the dawn of Neanderthal genomics.
Journal Article
The first acidobacterial laccase-like multicopper oxidase revealed by metagenomics shows high salt and thermo-tolerance
by
van Elsas, Jan Dirk
,
Mandic-Mulec, Ines
,
Cretoiu, Mariana Silvia
in
Acidobacteria
,
Acidobacteria - enzymology
,
Acidobacteria - genetics
2017
Metagenomics is a powerful tool that allows identifying enzymes with novel properties from the unculturable component of microbiomes. However, thus far only a limited number of laccase or laccase -like enzymes identified through metagenomics has been subsequently biochemically characterized. This work describes the successful bio-mining of bacterial laccase-like enzymes in an acidic bog soil metagenome and the characterization of the first acidobacterial laccase-like multicopper oxidase (LMCO). LMCOs have hitherto been mostly studied in fungi and some have already found applications in diverse industries. However, improved LMCOs are in high demand. Using molecular screening of a small metagenomic library (13,500 clones), a gene encoding a three-domain LMCO (LacM) was detected, showing the highest similarity to putative copper oxidases of
Candidatus
Solibacter (Acidobacteria). The encoded protein was expressed in
Escherichia coli,
purified by affinity chromatography and biochemically characterized. LacM oxidized a variety of phenolic substrates, including two standard laccase substrates (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS),
k
cat
/
k
M
= 8.45 s
−1
mM
−1
; 2,6-dimethoxyphenol (2,6-DMP),
k
cat
/
k
M
= 6.42 s
−1
mM
−1
), next to L-3,4-dihydroxyphenylalanine (L-DOPA), vanillic acid, syringaldazine, pyrogallol, and pyrocatechol. With respect to the latter two lignin building blocks, LacM showed the highest catalytic activity (
k
cat
/
k
M
= 173.6 s
−1
mM
−1
) for pyrogallol, with ca. 20% activity preserved even at pH 8.0. The enzyme was thermostable and heat-activated in the interval 40–60 °C, with an optimal activity on ABTS at 50 °C. It was rather stable at high salt concentration (e.g., 34% activity preserved at 500 mM NaCl) and in the presence of organic solvents. Remarkably, LacM decolored azo and triphenylmethane dyes, also in the absence of redox mediators.
Journal Article
High-Efficiency Transformation and Expression of Genomic Libraries in Yeast
by
De Lauri, Antonio Alfonso
,
Cestari, Igor
,
Antunes, Luiza Berenguer
in
Acetic acid
,
Combinatorial libraries
,
Deoxyribonucleic acid
2023
Saccharomyces cerevisiae is a powerful system for the expression of genome-wide or combinatorial libraries for diverse types of screening. However, expressing large libraries in yeast requires high-efficiency transformation and controlled expression. Transformation of yeast using electroporation methods is more efficient than chemical methods; however, protocols described for electroporation require large amounts of linearized plasmid DNA and often yield approximately 106 cfu/µg of plasmid DNA. We optimized the electroporation of yeast cells for the expression of whole-genome libraries to yield up to 108 cfu/µg plasmid DNA. The protocol generates sufficient transformants for 10–100× coverage of diverse genome libraries with small amounts of genomic libraries (0.1 µg of DNA per reaction) and provides guidance on calculations to estimate library size coverage and transformation efficiency. It describes the preparation of electrocompetent yeast cells with lithium acetate and dithiothreitol conditioning step and the transformation of cells by electroporation with carrier DNA. We validated the protocol using three yeast surface display libraries and demonstrated using nanopore sequencing that libraries’ size and diversity are preserved. Moreover, expression analysis confirmed library functionality and the method’s efficacy. Hence, this protocol yields a sufficient representation of the genome of interest for downstream screening purposes while limiting the amount of the genomic library required.
Journal Article
Genome wide SNP discovery in flax through next generation sequencing of reduced representation libraries
by
You, Frank M
,
Kumar, Santosh
,
Cloutier, Sylvie
in
AGSNP
,
Analysis
,
Animal Genetics and Genomics
2012
Background
Flax (
Linum usitatissimum
L.) is a significant fibre and oilseed crop. Current flax molecular markers, including isozymes, RAPDs, AFLPs and SSRs are of limited use in the construction of high density linkage maps and for association mapping applications due to factors such as low reproducibility, intense labour requirements and/or limited numbers. We report here on the use of a reduced representation library strategy combined with next generation Illumina sequencing for rapid and large scale discovery of SNPs in eight flax genotypes. SNP discovery was performed through
in silico
analysis of the sequencing data against the whole genome shotgun sequence assembly of flax genotype CDC Bethune. Genotyping-by-sequencing of an F
6
-derived recombinant inbred line population provided validation of the SNPs.
Results
Reduced representation libraries of eight flax genotypes were sequenced on the Illumina sequencing platform resulting in sequence coverage ranging from 4.33 to 15.64X (genome equivalents). Depending on the relatedness of the genotypes and the number and length of the reads, between 78% and 93% of the reads mapped onto the CDC Bethune whole genome shotgun sequence assembly. A total of 55,465 SNPs were discovered with the largest number of SNPs belonging to the genotypes with the highest mapping coverage percentage. Approximately 84% of the SNPs discovered were identified in a single genotype, 13% were shared between any two genotypes and the remaining 3% in three or more. Nearly a quarter of the SNPs were found in genic regions. A total of 4,706 out of 4,863 SNPs discovered in Macbeth were validated using genotyping-by-sequencing of 96 F
6
individuals from a recombinant inbred line population derived from a cross between CDC Bethune and Macbeth, corresponding to a validation rate of 96.8%.
Conclusions
Next generation sequencing of reduced representation libraries was successfully implemented for genome-wide SNP discovery from flax. The genotyping-by-sequencing approach proved to be efficient for validation. The SNP resources generated in this work will assist in generating high density maps of flax and facilitate QTL discovery, marker-assisted selection, phylogenetic analyses, association mapping and anchoring of the whole genome shotgun sequence.
Journal Article
Genomic Library Screens for Genes Involved in n-Butanol Tolerance in Escherichia coli
by
Kao, Katy C.
,
Almario, Maria P.
,
Reyes, Luis H.
in
1-Butanol - pharmacology
,
Acid resistance
,
Adaptation, Physiological - drug effects
2011
n-Butanol is a promising emerging biofuel, and recent metabolic engineering efforts have demonstrated the use of several microbial hosts for its production. However, most organisms have very low tolerance to n-butanol (up to 2% (v/v)), limiting the economic viability of this biofuel. The rational engineering of more robust n-butanol production hosts relies upon understanding the mechanisms involved in tolerance. However, the existing knowledge of genes involved in n-butanol tolerance is limited. The goal of this study is therefore to identify E. coli genes that are involved in n-butanol tolerance.
Using a genomic library enrichment strategy, we identified approximately 270 genes that were enriched or depleted in n-butanol challenge. The effects of these candidate genes on n-butanol tolerance were experimentally determined using overexpression or deletion libraries. Among the 55 enriched genes tested, 11 were experimentally shown to confer enhanced tolerance to n-butanol when overexpressed compared to the wild-type. Among the 84 depleted genes tested, three conferred increased n-butanol resistance when deleted. The overexpressed genes that conferred the largest increase in n-butanol tolerance were related to iron transport and metabolism, entC and feoA, which increased the n-butanol tolerance by 32.8±4.0% and 49.1±3.3%, respectively. The deleted gene that resulted in the largest increase in resistance to n-butanol was astE, which enhanced n-butanol tolerance by 48.7±6.3%.
We identified and experimentally verified 14 genes that decreased the inhibitory effect of n-butanol tolerance on E. coli. From the data, we were able to expand the current knowledge on the genes involved in n-butanol tolerance; the results suggest that an increased iron transport and metabolism and decreased acid resistance may enhance n-butanol tolerance. The genes and mechanisms identified in this study will be helpful in the rational engineering of more robust biofuel producers.
Journal Article
aTRAM - automated target restricted assembly method: a fast method for assembling loci across divergent taxa from next-generation sequencing data
2015
Background
Assembling genes from next-generation sequencing data is not only time consuming but computationally difficult, particularly for taxa without a closely related reference genome. Assembling even a draft genome using
de novo
approaches can take days, even on a powerful computer, and these assemblies typically require data from a variety of genomic libraries. Here we describe software that will alleviate these issues by rapidly assembling genes from distantly related taxa using a single library of paired-end reads: aTRAM, automated Target Restricted Assembly Method. The aTRAM pipeline uses a reference sequence, BLAST, and an iterative approach to target and locally assemble the genes of interest.
Results
Our results demonstrate that aTRAM rapidly assembles genes across distantly related taxa. In comparative tests with a closely related taxon, aTRAM assembled the same sequence as reference-based and
de novo
approaches taking on average < 1 min per gene. As a test case with divergent sequences, we assembled >1,000 genes from six taxa ranging from 25 – 110 million years divergent from the reference taxon. The gene recovery was between 97 – 99% from each taxon.
Conclusions
aTRAM can quickly assemble genes across distantly-related taxa, obviating the need for draft genome assembly of all taxa of interest. Because aTRAM uses a targeted approach, loci can be assembled in minutes depending on the size of the target. Our results suggest that this software will be useful in rapidly assembling genes for phylogenomic projects covering a wide taxonomic range, as well as other applications. The software is freely available
http://www.github.com/juliema/aTRAM
.
Journal Article
A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits
by
Esteras, Cristina
,
Monforte, Antonio J.
,
Picó, Belén
in
Agriculture
,
backcrossing
,
Biomedical and Life Sciences
2016
Background
Genomic libraries of introgression lines (ILs) consist of collections of homozygous lines with a single chromosomal introgression from a donor genotype in a common, usually elite, genetic background, representing the whole donor genome in the full collection. Currently, the only available melon IL collection was generated using Piel de sapo (var.
inodorus
) as the recurrent background. ILs are not available in genetic backgrounds representing other important market class cultivars, such as the
cantalupensis
. The recent availability of genomic tools in melon, such as SNP collections and genetic maps, facilitates the development of such mapping populations.
Results
We have developed a new genomic library of introgression lines from the Japanese cv. Ginsen Makuwa (var.
makuwa
) into the French Charentais-type cv. Vedrantais (var.
cantalupensis
) genetic background. In order to speed up the breeding program, we applied medium-throughput SNP genotyping with Sequenom MassARRAY technology in early backcross generations and High Resolution Melting in the final steps. The phenotyping of the backcross generations and of the final set of 27 ILs (averaging 1.3 introgressions/plant and covering nearly 100 % of the donor genome), in three environments, allowed the detection of stable QTLs for flowering and fruit quality traits, including some that affect fruit size in chromosomes 6 and 11, others that change fruit shape in chromosomes 7 and 11, others that change flesh color in chromosomes 2, 8 and 9, and still others that increase sucrose content and delay climacteric behavior in chromosomes 5 and 10.
Conclusions
A new melon IL collection in the Charentais genetic background has been developed. Genomic regions that consistently affect flowering and fruit quality traits have been identified, which demonstrates the suitability of this collection for dissecting complex traits in melon. Additionally, pre-breeding lines with new, commercially interesting phenotypes have been observed, including delayed climacteric ripening associated to higher sucrose levels, which is of great interest for Charentais cultivar breeding.
Journal Article