Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,213 result(s) for "Genotyping by sequencing"
Sort by:
Genotyping‐by‐sequencing approaches to characterize crop genomes: choosing the right tool for the right application
Summary In the last decade, the revolution in sequencing technologies has deeply impacted crop genotyping practice. New methods allowing rapid, high‐throughput genotyping of entire crop populations have proliferated and opened the door to wider use of molecular tools in plant breeding. These new genotyping‐by‐sequencing (GBS) methods include over a dozen reduced‐representation sequencing (RRS) approaches and at least four whole‐genome resequencing (WGR) approaches. The diversity of methods available, each often producing different types of data at different cost, can make selection of the best‐suited method seem a daunting task. We review the most common genotyping methods used today and compare their suitability for linkage mapping, genomewide association studies (GWAS), marker‐assisted and genomic selection and genome assembly and improvement in crops with various genome sizes and complexity. Furthermore, we give an outline of bioinformatics tools for analysis of genotyping data. WGR is well suited to genotyping biparental cross populations with complex, small‐ to moderate‐sized genomes and provides the lowest cost per marker data point. RRS approaches differ in their suitability for various tasks, but demonstrate similar costs per marker data point. These approaches are generally better suited for de novo applications and more cost‐effective when genotyping populations with large genomes or high heterozygosity. We expect that although RRS approaches will remain the most cost‐effective for some time, WGR will become more widespread for crop genotyping as sequencing costs continue to decrease.
Genome of ‘Charleston Gray’, the principal American watermelon cultivar, and genetic characterization of 1,365 accessions in the U.S. National Plant Germplasm System watermelon collection
Summary Years of selection for desirable fruit quality traits in dessert watermelon (Citrullus lanatus) has resulted in a narrow genetic base in modern cultivars. Development of novel genomic and genetic resources offers great potential to expand genetic diversity and improve important traits in watermelon. Here, we report a high‐quality genome sequence of watermelon cultivar ‘Charleston Gray’, a principal American dessert watermelon, to complement the existing reference genome from ‘97103’, an East Asian cultivar. Comparative analyses between genomes of ‘Charleston Gray’ and ‘97103’ revealed genomic variants that may underlie phenotypic differences between the two cultivars. We then genotyped 1365 watermelon plant introduction (PI) lines maintained at the U.S. National Plant Germplasm System using genotyping‐by‐sequencing (GBS). These PI lines were collected throughout the world and belong to three Citrullus species, C. lanatus, C. mucosospermus and C. amarus. Approximately 25 000 high‐quality single nucleotide polymorphisms (SNPs) were derived from the GBS data using the ‘Charleston Gray’ genome as the reference. Population genomic analyses using these SNPs discovered a close relationship between C. lanatus and C. mucosospermus and identified four major groups in these two species correlated to their geographic locations. Citrullus amarus was found to have a distinct genetic makeup compared to C. lanatus and C. mucosospermus. The SNPs also enabled identification of genomic regions associated with important fruit quality and disease resistance traits through genome‐wide association studies. The high‐quality ‘Charleston Gray’ genome and the genotyping data of this large collection of watermelon accessions provide valuable resources for facilitating watermelon research, breeding and improvement.
Haplotype‐based genotyping‐by‐sequencing in oat genome research
Summary In a de novo genotyping‐by‐sequencing (GBS) analysis of short, 64‐base tag‐level haplotypes in 4657 accessions of cultivated oat, we discovered 164741 tag‐level (TL) genetic variants containing 241224 SNPs. From this, the marker density of an oat consensus map was increased by the addition of more than 70000 loci. The mapped TL genotypes of a 635‐line diversity panel were used to infer chromosome‐level (CL) haplotype maps. These maps revealed differences in the number and size of haplotype blocks, as well as differences in haplotype diversity between chromosomes and subsets of the diversity panel. We then explored potential benefits of SNP vs. TL vs. CL GBS variants for mapping, high‐resolution genome analysis and genomic selection in oats. A combined genome‐wide association study (GWAS) of heading date from multiple locations using both TL haplotypes and individual SNP markers identified 184 significant associations. A comparative GWAS using TL haplotypes, CL haplotype blocks and their combinations demonstrated the superiority of using TL haplotype markers. Using a principal component‐based genome‐wide scan, genomic regions containing signatures of selection were identified. These regions may contain genes that are responsible for the local adaptation of oats to Northern American conditions. Genomic selection for heading date using TL haplotypes or SNP markers gave comparable and promising prediction accuracies of up to r = 0.74. Genomic selection carried out in an independent calibration and test population for heading date gave promising prediction accuracies that ranged between r = 0.42 and 0.67. In conclusion, TL haplotype GBS‐derived markers facilitate genome analysis and genomic selection in oat.
Geographical isolation, habitat shifts and hybridisation in the diversification of the Macaronesian endemic genus Argyranthemum (Asteraceae)
• Inferring the processes responsible for the rich endemic diversity of oceanic island floras is important for our understanding of plant evolution and setting practical conservation priorities. This requires an accurate knowledge of phylogenetic relationships, which have often been difficult to resolve due to a lack of genetic variation. • We employed genotyping-by-sequencing (GBS) to investigate how geographical isolation, habitat shifts, and hybridisation have contributed to the evolution of diversity observed in Argyranthemum Webb (Asteraceae), the largest genus of flowering plants endemic to the Macaronesian archipelagos. • Species relationships were resolved, and biogeographical stochastic mapping identified intra-island speciation as the most frequent biogeographic process underlying diversification, contrary to the prevailing view in Argyranthemum and the Canary Islands. D-statistics revealed significant evidence of hybridisation between lineages co-occurring on the same island, however there was little support for the hypothesis that hybridisation may be responsible for the occurrence of nonmonophyletic multi-island endemic (MIE) species. • Geographic isolation, habitat shifts and hybridisation have all contributed to the diversification of Argyranthemum, with intra-island speciation found to be more frequent than previously thought. Morphological convergence is also proposed to explain the occurrence of nonmonophyletic MIE species. This study reveals greater complexity in the evolutionary processes generating Macaronesian endemic diversity.
Invasion history of Lycium ferocissimum in Australia
Aim We investigated the invasion history of Lycium ferocissimum, a spine‐covered shrub native to South Africa that was introduced to Australia in the mid‐1800s, and has since developed into a damaging invasive plant of undisturbed landscapes and pastures. In addition to identifying the provenance of the Australian plants, we tested for evidence of admixture, and contrasted genetic diversity and structuring across the native and introduced ranges. Location Samples were collected across South Africa (24 localities) and Australia (26 localities). Methods We used genotyping‐by‐sequencing (3117 SNPs across 381 individuals) to assess population genetic structuring in L. ferocissimum across Australia and South Africa. Coalescent analyses were used to explicitly test contrasting invasion scenarios. Results Clear geographic genetic structuring was detected across South Africa, with distinct clusters in the Eastern and Western Cape provinces. The L. ferocissimum plants in Australia form their own genetic cluster, with a similar level of genetic diversity as plants in South Africa. Coalescent analyses demonstrated that the lineage in Australia was formed by admixture between Eastern Cape and Western Cape plants, with most of the genetic material from the Australian lineage originating from the Western Cape. Our analyses suggest that L. ferocissimum plants were originally introduced to South Australia, though it is unclear whether admixture occurred before or after its introduction to Australia. We detected little evidence of geographic genetic structure across Australia, although many of the populations were genetically distinct from one another. Main Conclusions Our results illustrate how admixture can result in genetically diverse and distinct invasive populations. The complex invasion history of L. ferocissimum in Australia poses particular challenges for biological control. We suggest potential biological control agents should be screened against admixed plants (in addition to plants from the Eastern and Western Cape) to test whether they provide effective control of the genetically distinct invasive lineage.
High-throughput sequencing data clarify evolutionary relationships among North American Vitis species and improve identification in USDA Vitis germplasm collections
Premise Of The Study Grapes are one of the most economically important berry crops worldwide, with the vast majority of production derived from the domesticated Eurasian species Vitis vinifera. Expansion of production into new areas, development of new cultivars, and concerns about adapting grapevines for changing climates necessitate the use of wild grapevine species in breeding programs. Diversity within Vitis has long been a topic of study; however, questions remain regarding relationships between species. Furthermore, the identity of some living accessions is unclear. Methods This study generated 11,020 single nucleotide polymorphism (SNP) markers for more than 300 accessions in the USDA‐ARS grape germplasm repository using genotyping‐by‐sequencing. Resulting data sets were used to reconstruct evolutionary relationships among several North American and Eurasian Vitis species, and to suggest taxonomic labels for previously unidentified and misidentified germplasm accessions based on genetic distance. Key Results Maximum likelihood analyses of SNP data support the monophyly of Vitis, subg. Vitis, a Eurasian subg. Vitis clade, and a North American subg. Vitis clade. Data delineate species groups within North America. In addition, analysis of genetic distance suggested taxonomic identities for 20 previously unidentified Vitis accessions and for 28 putatively misidentified accessions. Conclusions This work advances understanding of Vitis evolutionary relationships and provides the foundation for ongoing germplasm enhancement. It supports conservation and breeding efforts by contributing to a growing genetic framework for identifying novel genetic variation and for incorporating new, unsampled populations into the germplasm repository system.
Pleistocene climate changes, and not agricultural spread, accounts for range expansion and admixture in the dominant grassland species Lolium perenne L
Aim Grasslands have been pivotal in the development of herbivore breeding since the Neolithic and still represent the most widespread agricultural land use across Europe. However, it remains unclear whether the current large‐scale genetic variation of plant species found in natural grasslands of Europe is the result of human activities or natural processes. Location Europe. Taxon Lolium perenne L. (perennial ryegrass). Methods We reconstructed the phylogeographic history of L. perenne, a dominant grassland species, using 481 natural populations, including 11 populations of closely related taxa. We combined Genotyping‐by‐Sequencing (GBS) and pool‐Sequencing (pool‐Seq) to obtain high‐quality allele frequency calls of ~500 k SNP loci. We performed genetic structure analyses and demographic reconstructions based on the site frequency spectrum (SFS). We additionally used the same genotyping protocol to assess the genomic diversity of a set of 32 cultivars representative of the L. perenne cultivars widely used for forage purposes. Results Expansion across Europe took place during the Würm glaciation (12–110 kya), a cooling period that decreased the dominance of trees in favour of grasses. Splits and admixtures in L. perenne fit historical climate changes in the Mediterranean basin. The development of agriculture in Europe (7–3.5 kya), that caused an increase in the abundance of grasslands, did not have an effect on the demographic patterns of L. perenne. We found that most modern cultivars are closely related to natural diversity from north‐western Europe. Thus, modern cultivars do not represent the wide genetic variation found in natural populations. Main conclusions Demographic events in L. perenne can be explained by the changing climatic conditions during the Pleistocene. Natural populations maintain a wide genomic variability at continental scale that has been minimally exploited by recent breeding activities. This variability constitutes valuable standing genetic variation for future adaptation of grasslands to climate change, safeguarding the agricultural services they provide.
Genome‐wide association mapping and comparative genomics identifies genomic regions governing grain nutritional traits in finger millet (Eleusine coracana L. Gaertn.)
Societal Impact Statement Micronutrient deficiency is a serious and underestimated global health concern. Identifying existing micronutritional richness in traditional crops, and breeding this potential into staple crops that are more frequently consumed, could offer a potential low‐cost, sustainable solution to micronutrient deficiency. Here, we provide the first insight into genetic control of grain micronutrient content in the staple food crop finger millet (Eleusine coracana). Quantifying the existing natural variation in nutritional traits, and identifying the regions of the genome associated with these traits, will underpin future breeding efforts to improve not only global food and nutrition security, but also human health. Summary Finger millet is an excellent cereal crop to alleviate micronutrient malnutrition in marginal communities because of its nutrient‐dense grains. Identification of the alleles governing these characteristics will help to develop improved germplasm. An assembly of 190 genotypes was evaluated for six minerals (iron, zinc, calcium, magnesium, potassium, and sodium) and protein content. A combination of genotyping‐by‐sequencing (GBS) and genome‐wide association study (GWAS) was applied to identify marker‐trait associations (MTAs). Candidate genes underlying significant associations were predicted through comparative mapping with other cereals. A wide range of variation was observed for all traits. GBS generated 169,365 single‐nucleotide polymorphisms and three subpopulations were identified. GWAS, using general linear and mixed model approaches to correct for population structure and genetic relatedness, identified 418 common markers (p‐value ≤ 10–3, FDR < 0.1) linked with mineral content. Of these, 34 markers crossed the Bonferroni threshold, out of which 18 showed homology with candidate genes having putative functions in binding, remobilization or transport of metal ions. This is the first report to utilize the phenotypic variability of grain minerals in finger millet genotypes to identify MTAs and predict associated putative candidate genes. Postvalidation, these markers may be employed to improve grain nutrient quality through marker‐assisted breeding. Micronutrient deficiency is a serious and underestimated global health concern. Identifying existing micronutritional richness in traditional crops, and breeding this potential into staple crops that are more frequently consumed, could offer a potential low‐cost, sustainable solution to micronutrient deficiency. Here, we provide the first insight into genetic control of grain micronutrient content in the staple food crop finger millet (Eleusine coracana). Quantifying the existing natural variation in nutritional traits, and identifying the regions of the genome associated with these traits, will underpin future breeding efforts to improve not only global food and nutrition security, but also human health.
Genome‐wide association mapping of QTLs implied in potato virus Y population sizes in pepper: evidence for widespread resistance QTL pyramiding
Summary In this study, we looked for genetic factors in the pepper (Capsicum annuum) germplasm that control the number of potato virus Y (PVY) particles entering the plant (i.e. effective population size at inoculation) and the PVY accumulation at the systemic level (i.e. census population size). Using genotyping‐by‐sequencing (GBS) in a core collection of 256 pepper accessions, we obtained 10 307 single nucleotide polymorphisms (SNPs) covering the whole genome. Genome‐wide association studies (GWAS) detected seven SNPs significantly associated with the virus population size at inoculation and/or systemic level on chromosomes 4, 6, 9 and 12. Two SNPs on chromosome 4 associated with both PVY population sizes map closely to the major resistance gene pvr2 encoding the eukaryotic initiation factor 4E. No obvious candidates for resistance were identified in the confidence intervals for the other chromosomes. SNPs detected on chromosomes 6 and 12 colocalized with resistance quantitative trait loci (QTLs) previously identified with a biparental population. These results show the efficiency of GBS and GWAS in C. annuum, indicate highly consistent results between GWAS and classical QTL mapping, and suggest that resistance QTLs identified with a biparental population are representative of a much larger collection of pepper accessions. Moreover, the resistance alleles at these different loci were more frequently combined than expected by chance in the core collection, indicating widespread pyramiding of resistance QTLs and widespread combination of resistance QTLs and major effect genes. Such pyramiding may increase resistance efficiency and/or durability.
Sequencing vs. amplification for the estimation of allele dosages in sugarcane (Saccharum spp.)
Premise Detecting single‐nucleotide polymorphisms (SNPs) in a cost‐effective way is fundamental in any plant breeding pipeline. Here, we compare three genotyping techniques for their ability to reproduce the allele dosage of SNPs of interest in sugarcane (Saccharum spp.). Methods To identify a reproducible technique to estimate allele dosage for the validation of SNP markers, the correlation between Flex‐Seq, kompetitive allele‐specific PCR (KASP), and genotyping‐by‐sequencing and restriction site–associated DNA sequencing (GBS+RADseq) was determined for a set of 76 SNPs. To find alternative methodologies for allele dosage estimation, the KASP and Flex‐Seq techniques were compared for the same set of SNPs. For the three techniques, a population of 53 genotypes from the diverse sugarcane panel of the Centro de Investigación de la Caña de Azúcar (Cenicaña), Colombia, was selected. Results The average Pearson correlation coefficients between GBS+RADseq and Flex‐Seq, GBS+RADseq and KASP, and Flex‐Seq and KASP were 0.62 ± 0.27, 0.38 ± 0.27, and 0.38 ± 0.30, respectively. Discussion Flex‐Seq reproduced the allele dosages determined using GBS+RADseq with good levels of precision because of its depth of sequencing and ability to target specific positions in the genome. Additionally, Flex‐Seq outperformed KASP by allowing the conversion of a higher number of SNPs and a more accurate estimation of the allele dosage. Flex‐Seq has therefore become the genotyping methodology of choice for marker validation at Cenicaña. Resumen Premisa Detectar polimorfismos de un único nucleótido (SNP) de forma costo‐efectiva es fundamental en cualquier programa de mejoramiento genético. En este artículo nosotros comparamos tres técnicas de genotipado para medir su habilidad en reproducir las dosis alélicas de SNPs de interés en caña de azúcar (Saccharum spp.). Métodos Para identificar una técnica reproducible para la estimación de dosis alélicas durante los pasos de validación de marcadores, la correlación entre Flex‐Seq, kompetitive allele‐specific PCR (KASP), y genotyping‐by‐sequencing and restriction site–associated DNA sequencing (GBS+RADseq) fue determinada para un set de 76 SNPs. Para identificar metodologías alternativas en la estimación de las dosis alélicas, las tecnologías KASP y Flex‐Seq fueron comparadas para el mismo grupo de SNPs. Para las tres técnicas, una población de 53 genotipos fue seleccionados de la población diversa de caña de azúcar del Centro de Investigación de la Caña de Azúcar (Cenicaña), Colombia. Resultados El promedio del coeficiente de correlación de Pearson entre GBS+RADseq y Flex‐Seq, GBS+RADseq y KASP, y Flex‐Seq y KASP fue de 0.62 ± 0.27, 0.38 ± 0.27, y 0.38 ± 0.30, respectivamente. Discusión Flex‐Seq reprodujo las dosis alélicas determinadas usando GBS+RADseq con buenos niveles de precisión debido a su profundidad de secuenciación y habilidad de secuenciar posiciones especificas en el genoma. Adicionalmente, Flex‐Seq superó a KASP al permitir la conversión de un número mayor de SNPs y al estimar las dosis alélicas de forma más precisa. Flex‐Seq por tanto se convierte en la metodología de genotipado de elección para la validación de marcadores en Cenicaña.