Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
4,195 result(s) for "Geographic Information Systems - statistics "
Sort by:
Estimating experienced racial segregation in US cities using large-scale GPS data
We estimate a measure of segregation, experienced isolation, that captures individuals’ exposure to diverse others in the places they visit over the course of their days. Using Global Positioning System (GPS) data collected from smartphones, we measure experienced isolation by race. We find that the isolation individuals experience is substantially lower than standard residential isolation measures would suggest but that experienced isolation and residential isolation are highly correlated across cities. Experienced isolation is lower relative to residential isolation in denser, wealthier, more educated cities with high levels of public transit use and is also negatively correlated with income mobility.
SoilGrids1km — Global Soil Information Based on Automated Mapping
Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. We present SoilGrids1km--a global 3D soil information system at 1 km resolution--containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg-1), soil pH, sand, silt and clay fractions (%), bulk density (kg m-3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha-1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5-fold cross-validation were between 23-51%. SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative Commons Non Commercial license.
Impact of traffic variability on geographic accessibility to 24/7 emergency healthcare for the urban poor: A GIS study in Dhaka, Bangladesh
Ensuring access to healthcare in emergency health situations is a persistent concern for health system planners. Emergency services, including critical care units for severe burns and coronary events, are amongst those for which travel time is the most crucial, potentially making a difference between life and death. Although it is generally assumed that access to healthcare is not an issue in densely populated urban areas due to short distances, we prove otherwise by applying improved methods of assessing accessibility to emergency services by the urban poor that take traffic variability into account. Combining unique data on emergency health service locations, traffic flow variability and informal settlements boundaries, we generated time-cost based service areas to assess the extent to which emergency health services are reachable by urban slum dwellers when realistic traffic conditions and their variability in time are considered. Variability in traffic congestion is found to have significant impact on the measurement of timely access to, and availability of, healthcare services for slum populations. While under moderate traffic conditions all slums in Dhaka City are within 60-minutes travel time from an emergency service, in congested traffic conditions only 63% of the city's slum population is within 60-minutes reach of most emergency services, and only 32% are within 60-minutes reach of a Burn Unit. Moreover, under congested traffic conditions only 12% of slums in Dhaka City Corporation comply with Bangladesh's policy guidelines that call for access to 1 health service per 50,000 population for most emergency service types, and not a single slum achieved this target for Burn Units. Emergency Obstetric Care (EmOC) and First Aid & Casualty services provide the best coverage, with nearly 100% of the slum population having timely access within 60-minutes in any traffic condition. Ignoring variability in traffic conditions results in a 3-fold overestimation of geographic coverage and masks intra-urban inequities in accessibility to emergency care, by overestimating geographic accessibility in peripheral areas and underestimating the same for central city areas. The evidence provided can help policy makers and urban planners improve health service delivery for the urban poor. We recommend that taking traffic conditions be taken into account in future GIS-based analysis and planning for healthcare service accessibility in urban areas.
Risk terrain modeling : crime prediction and risk reduction
\"Risk terrain modeling (RTM) diagnoses the spatial attractors of criminal behavior and makes accurate predictions of where crime will occur at the micro-level. This book presents RTM as part of a larger risk management agenda that defines and measures crime problems; suggests ways in which they can be addressed through interventions; proposes measures for assessing effectiveness of treatment and sustainability of efforts; and offers suggestions for how police organizations can address vulnerabilities and exposures in the communities that they serve through strategies that go beyond specific deterrence of offenders. Technical and conceptual aspects of RTM are considered into the context of past criminological research, leading to a discussion of crime vulnerabilities and exposures, and the Theory of Risky Places. Then best practices for RTM, crime prediction, and risk reduction are set to ACTION. Case studies empirically demonstrate how RTM can be used to analyze the spatial dynamics of crime, allocate resources, and implement customized crime and risk reduction strategies that are transparent, measurable, and effective. Researchers and practitioners will learn how the combined factors that contribute to criminal behavior can be targeted, connections to crime can be monitored, spatial vulnerabilities can be assessed, and actions can be taken to reduce the worst effects\"--Provided by publisher.
A stochastic model of randomly accelerated walkers for human mobility
Recent studies of human mobility largely focus on displacements patterns and power law fits of empirical long-tailed distributions of distances are usually associated to scale-free superdiffusive random walks called Lévy flights. However, drawing conclusions about a complex system from a fit, without any further knowledge of the underlying dynamics, might lead to erroneous interpretations. Here we show, on the basis of a data set describing the trajectories of 780,000 private vehicles in Italy, that the Lévy flight model cannot explain the behaviour of travel times and speeds. We therefore introduce a class of accelerated random walks, validated by empirical observations, where the velocity changes due to acceleration kicks at random times. Combining this mechanism with an exponentially decaying distribution of travel times leads to a short-tailed distribution of distances which could indeed be mistaken with a truncated power law. These results illustrate the limits of purely descriptive models and provide a mechanistic view of mobility. Many human mobility studies have shown empirically long-tailed distance distributions, which are usually associated to Lévy flights. Here, the authors show that the behavior of private vehicles could be misinterpreted as Lévy flights but is fully captured by a class of accelerated random walks.
Using Google Location History data to quantify fine-scale human mobility
Background Human mobility is fundamental to understanding global issues in the health and social sciences such as disease spread and displacements from disasters and conflicts. Detailed mobility data across spatial and temporal scales are difficult to collect, however, with movements varying from short, repeated movements to work or school, to rare migratory movements across national borders. While typical sources of mobility data such as travel history surveys and GPS tracker data can inform different typologies of movement, almost no source of readily obtainable data can address all types of movement at once. Methods Here, we collect Google Location History (GLH) data and examine it as a novel source of information that could link fine scale mobility with rare, long distance and international trips, as it uniquely spans large temporal scales with high spatial granularity. These data are passively collected by Android smartphones, which reach increasingly broad audiences, becoming the most common operating system for accessing the Internet worldwide in 2017. We validate GLH data against GPS tracker data collected from Android users in the United Kingdom to assess the feasibility of using GLH data to inform human movement. Results We find that GLH data span very long temporal periods (over a year on average in our sample), are spatially equivalent to GPS tracker data within 100 m, and capture more international movement than survey data. We also find GLH data avoid compliance concerns seen with GPS trackers and bias in self-reported travel, as GLH is passively collected. We discuss some settings where GLH data could provide novel insights, including infrastructure planning, infectious disease control, and response to catastrophic events, and discuss advantages and disadvantages of using GLH data to inform human mobility patterns. Conclusions GLH data are a greatly underutilized and novel dataset for understanding human movement. While biases exist in populations with GLH data, Android phones are becoming the first and only device purchased to access the Internet and various web services in many middle and lower income settings, making these data increasingly appropriate for a wide range of scientific questions.
International variation in neighborhood walkability, transit, and recreation environments using geographic information systems: the IPEN adult study
Background The World Health Organization recommends strategies to improve urban design, public transportation, and recreation facilities to facilitate physical activity for non-communicable disease prevention for an increasingly urbanized global population. Most evidence supporting environmental associations with physical activity comes from single countries or regions with limited variation in urban form. This paper documents variation in comparable built environment features across countries from diverse regions. Methods The International Physical Activity and the Environment Network (IPEN) study of adults aimed to measure the full range of variation in the built environment using geographic information systems (GIS) across 12 countries on 5 continents. Investigators in Australia, Belgium, Brazil, Colombia, the Czech Republic, Denmark, China, Mexico, New Zealand, Spain, the United Kingdom, and the United States followed a common research protocol to develop internationally comparable measures. Using detailed instructions, GIS-based measures included features such as walkability (i.e., residential density, street connectivity, mix of land uses), and access to public transit, parks, and private recreation facilities around each participant’s residential address using 1-km and 500-m street network buffers. Results Eleven of 12 countries and 15 cities had objective GIS data on built environment features. We observed a 38-fold difference in median residential densities, a 5-fold difference in median intersection densities and an 18-fold difference in median park densities. Hong Kong had the highest and North Shore, New Zealand had the lowest median walkability index values, representing a difference of 9 standard deviations in GIS-measured walkability. Conclusions Results show that comparable measures can be created across a range of cultural settings revealing profound global differences in urban form relevant to physical activity. These measures allow cities to be ranked more precisely than previously possible. The highly variable measures of urban form will be used to explain individuals’ physical activity, sedentary behaviors, body mass index, and other health outcomes on an international basis. Present measures provide the ability to estimate dose–response relationships from projected changes to the built environment that would otherwise be impossible.