Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
876 result(s) for "Geometry Study and teaching."
Sort by:
Geometry as Objective Science in Elementary School Classrooms
This study examines the origins of geometry in and out of the intuitively given everyday lifeworlds of children in a second-grade mathematics class. These lifeworlds, though pre-geometric, are not without model objects that denote and come to anchor geometric idealities that they will understand at later points in their lives. Roth's analyses explain how geometry, an objective science, arises anew from the pre-scientific but nevertheless methodic actions of children in a structured world always already shot through with significations. He presents a way of understanding knowing and learning in mathematics that differs from other current approaches, using case studies to demonstrate contradictions and incongruences of other theories - Immanuel Kant, Jean Piaget, and more recent forms of (radical, social) constructivism, embodiment theories, and enactivism - and to show how material phenomenology fused with phenomenological sociology provides answers to the problems that these other paradigms do not answer.
Developing Essential Understanding of Geometry and Measurement in Grades 3-5
How can you introduce terms from geometry and measurement so that your students' vocabulary will enhance their understanding of concepts and definitions? What can you say to clarify the thinking of a student who claims that perimeter is always an even number? How does knowing what changes or stays the same when shapes are transformed help you support and extend your students' understanding of shapes and the space that they occupy?How much do you know ... and how much do you need to know?Helping your students develop a robust understanding of geometry and measurement requires that you understand fundamental statistical concepts deeply. But what does that mean?This book focuses on essential knowledge for mathematics teachers about geometry and measurement. It is organized around three big ideas, supported by multiple smaller, interconnected ideas--essential understandings. Taking you beyond a simple introduction to geometry and measurement, the book will broaden and deepen your understanding of one of the most challenging topics for students--and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls, and dispel misconceptions. You will also learn to develop appropriate tasks, techniques, and tools for assessing students' understanding of the topic.Focus on the ideas that you need to understand thoroughly to teach confidently.
Visualizing mathematics with 3D printing
The first book to explain mathematics using 3D printed models. Winner of the Technical Text of the Washington Publishers Wouldn't it be great to experience three-dimensional ideas in three dimensions? In this book—the first of its kind—mathematician and mathematical artist Henry Segerman takes readers on a fascinating tour of two-, three-, and four-dimensional mathematics, exploring Euclidean and non-Euclidean geometries, symmetry, knots, tilings, and soap films. Visualizing Mathematics with 3D Printing includes more than 100 color photographs of 3D printed models. Readers can take the book's insights to a new level by visiting its sister website, 3dprintmath.com, which features virtual three-dimensional versions of the models for readers to explore. These models can also be ordered online or downloaded to print on a 3D printer. Combining the strengths of book and website, this volume pulls higher geometry and topology out of the realm of the abstract and puts it into the hands of anyone fascinated by mathematical relationships of shape. With the book in one hand and a 3D printed model in the other, readers can find deeper meaning while holding a hyperbolic honeycomb, touching the twists of a torus knot, or caressing the curves of a Klein quartic.
Geometry with trigonometry
Geometry with Trigonometry Second Edition is a second course in plane Euclidean geometry, second in the sense that many of its basic concepts will have been dealt with at school, less precisely.
Practical linear algebra : a geometry toolbox
\"Practical Linear Algebra covers all the concepts in a traditional undergraduate-level linear algebra course, but with a focus on practical applications. The book develops these fundamental concepts in 2D and 3D with a strong emphasis on geometric understanding before presenting the general (n-dimensional) concept. The book does not employ a theorem/proof structure, and it spends very little time on tedious, by-hand calculations (e.g., reduction to row-echelon form), which in most job applications are performed by products such as Mathematica. Instead the book presents concepts through examples and applications. \"-- Provided by publisher.
Interactions on digital tablets in the context of 3D geometry learning: contributions and assessments
Over the last few years, multi-touch mobile devices have become increasingly common. However, very few applications in the context of 3D geometry learning can be found in app stores. Manipulating a 3D scene with a 2D device is the main difficulty of such applications. Throughout this book, the author focuses on allowing young students to manipulate, observe and modify 3D scenes using new technologies brought about by digital tablets. Through a user-centered approach, the author proposes a grammar of interactions adapted to young learners, and then evaluates acceptability, ease of use and ease of learning of the interactions proposed. Finally, the author studies in situ the pedagogic benefits of the use of tablets with an app based on the suggested grammar. The results show that students are able to manipulate, observe and modify 3D scenes using an adapted set of interactions. Moreover, in the context of 3D geometry learning, a significant contribution has been observed in two classes when students use such an application. The approach here focuses on interactions with digital tablets to increase learning rather than on technology. First, defining which interactions allow pupils to realize tasks needed in the learning process, then, evaluating the impact of these interactions on the learning process. This is the first time that both interactions and the learning process have been taken into account at the same time.