Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
17,600
result(s) for
"Geophysical methods"
Sort by:
Well Logging and Formation Evaluation
2005
This hand guide in the Gulf Drilling Guides series offers practical techniques that are valuable to petrophysicists and engineers in their day-to-day jobs. Based on the authors many years of experience working in oil companies around the world, this guide is a comprehensive collection of techniques and rules of thumb that work.The primary functions of the drilling or petroleum engineer are to ensure that the right operational decisions are made during the course of drilling and testing a well, from data gathering, completion and testing, and thereafter to provide the necessary parameters to enable an accurate static and dynamic model of the reservoir to be constructed. This guide supplies these, and many other, answers to their everyday problems.
Fourth International Conference on Engineering Geophysics, 9-12 October 2017, al-Ain, United Arab Emirates
by
المؤتمر العالمي للجيوفيزياء الهندسية (4th : 2017 : العين، الإمارات العربية المتحدة)
,
جامعة الإمارات العربية المتحدة organizer
,
بلدية العين (الإمارات العربية المتحدة). دائرة التخطيط العمراني والبلديات organizer
in
Engineering geology Congresses
,
Geophysics Congresses
,
Prospecting Geophysical methods Congresses
2017
The Self-Potential Method
by
Revil, André
,
Jardani, Abderrahim
in
Geophysical methods
,
Prospecting
,
Prospecting -- Geophysical methods
2013
The self-potential method enables non-intrusive assessment and imaging of disturbances in electrical currents of conductive subsurface materials. It has an increasing number of applications, from mapping fluid flow in the subsurface of the Earth to detecting preferential flow paths in earth dams and embankments. This book provides the first full overview of the fundamental concepts of this method and its applications in the field. It discusses a historical perspective, laboratory investigations undertaken, the inverse problem and seismoelectric coupling, and concludes with the application of the self-potential method to geohazards, water resources and hydrothermal systems. Chapter exercises, online datasets and analytical software enable the reader to put the theory into practice. This book is a key reference for academic researchers and professionals working in the areas of geophysics, environmental science, hydrology and geotechnical engineering. It will also be valuable reading for related graduate courses.
Thick-skinned tectonics and basement-involved fold–thrust belts: insights from selected Cenozoic orogens
by
LACOMBE, OLIVIER
,
BELLAHSEN, NICOLAS
in
Alps
,
Apennines
,
applied (geophysical surveys & methods)
2016
Defining the structural style of fold–thrust belts and understanding the controlling factors are necessary steps towards prediction of their long-term and short-term dynamics, including seismic hazard, and to assess their potential in terms of hydrocarbon exploration. While the thin-skinned structural style has long been a fashionable view for outer parts of orogens worldwide, a wealth of new geological and geophysical studies has pointed out that a description in terms of thick-skinned deformation is, in many cases, more appropriate. This paper aims at providing a review of what we know about basement-involved shortening in foreland fold–thrust belts on the basis of the examination of selected Cenozoic orogens. After describing how structural interpretations of fold–thrust belts have evolved through time, this paper addresses how and the extent to which basement tectonics influence their geometry and their kinematics, and emphasizes the key control exerted by lithosphere rheology, including structural and thermal inheritance, and local/regional boundary conditions on the occurrence of thick-skinned tectonics in the outer parts of orogens.
Journal Article
Seeing Beneath the Soil
by
Clark, Oliver Anthony
,
Clark, Anthony
in
Archaeological Science & Methodology
,
Archaeology
,
Geophysics in archaeology
1990,2003,1996
Scientific soil prospecting methods can give dramatic pictures of buried archaeological sites, and sometimes information on what occurred within them, before any earth has ben removed. Dr Clark, who was one of the earliest to work in this field, has written the first general survey of an increasingly important area of practical archaeology. The emphasis is on the principles and practical application of the well established techniques of resistivity, magnetometry and magnetic susceptibility, with shorter sections on emerging and less common techniques such as ground-penetrating radar, electromagnetic methods and phosphate survey. This paperback edition updates and enhances the earlier book, adding new material such as the large-scale evaluation exercises now required as a precondition of planning consent for major developments.
Montagne Pelée volcano (Martinique, in the French Lesser Antilles) hydrogeological system revealed by high-resolution helicopter-borne electromagnetic imagery
by
Taïlamé, Anne-Lise
,
Nacimento, Laureen
,
Bellier, Vincent
in
Aquifers
,
Boreholes
,
Effective precipitation
2023
Montagne Pelée, on the French island of Martinique, eastern Caribbean Sea, has been one of the deadliest volcanoes in the world, with 30,000 victims following the 1902 eruption. Thousands of people still live nearby, and this volcano is a strategic “water tank” for Martinique Island, providing 40% of the island’s water supply. This research aimed to better understand its hydrogeological functioning and the relationship with its complex volcanological evolution, taking advantage of a high-resolution helicopter-borne geophysical survey correlated with hydrogeological data from the boreholes and springs databases. Electromagnetic data, correlated with hydrogeological data, allowed for the identification of unsaturated zones, aquifers, and seawater intrusions, as well as the main geological units. In addition, data synthesised from pumping tests revealed that the older the unconsolidated pyroclastic deposits, the lower their hydraulic conductivity. The structural asymmetry between the northeastern and southwestern volcano flanks impacts its hydrogeological functioning. Consequently, the Montagne Pelée hydrogeological conceptual model is marked by several distinguishable aquifers. The upper perched aquifer within recent lava domes is directly involved in, and impacted by, phreatic eruptions, and it supports low flowrate springs. The remaining effective rainfall infiltrates to depth and recharges the hydrothermal system through vertical fractures. The other aquifers are categorized into three groups: northeastern, southeastern and southwestern flank aquifers. This research is a new step toward a better understanding of the Lesser Antilles volcanoes and more broadly of the central and proximal parts of the andesitic active volcanoes.
Journal Article
Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques
by
Chowdary, V. M
,
Jha, Madan K
,
Chowdhury, Alivia
in
Analytic hierarchy process
,
Aquatic Pollution
,
Assessments
2010
An approach is presented for the evaluation of groundwater potential using remote sensing, geographic information system, geoelectrical, and multi-criteria decision analysis techniques. The approach divides the available hydrologic and hydrogeologic data into two groups, exogenous (hydrologic) and endogenous (subsurface). A case study in Salboni Block, West Bengal (India), uses six thematic layers of exogenous parameters and four thematic layers of endogenous parameters. These thematic layers and their features were assigned suitable weights which were normalized by analytic hierarchy process and eigenvector techniques. The layers were then integrated using ArcGIS software to generate two groundwater potential maps. The hydrologic parameters-based groundwater potential zone map indicated that the ‘good' groundwater potential zone covers 27.14% of the area, the ‘moderate' zone 45.33%, and the ‘poor' zone 27.53%. A comparison of this map with the groundwater potential map based on subsurface parameters revealed that the hydrologic parameters-based map accurately delineates groundwater potential zones in about 59% of the area, and hence it is dependable to a certain extent. More than 80% of the study area has moderate-to-poor groundwater potential, which necessitates efficient groundwater management for long-term water security. Overall, the integrated technique is useful for the assessment of groundwater resources at a basin or sub-basin scale.
Journal Article
Evaluation of a Weathered Rock Aquifer Using ERT Method in South Guangdong, China
2018
In areas where weathering has hydrogeological significance, geophysical methods can assist to map the subsurface characteristics for groundwater occurrence. In this study, electrical resistivity tomography (ERT) survey in combination with joint profile method (JPM), magnetic method and borehole data was conducted to investigate the aquifer potential in strongly weathered volcanic rocks. The aim was to assess the geological units related to the water-bearing formation of aquifer systems in South Guangdong, China. The resistivities were measured along four profiles each with a total of 81 electrodes, a spread length of 400 m and an electrode spacing of 5 m insuring continuous coverage. The data from a borehole survey revealed three different layers i.e., highly weathered layer, partly weathered layer and fresh basement rock, whose respective thickness were integrated into ERT images to get more useful results about the real resistivity ranges of the these layers (i.e., 22 Ωm–345 Ωm for highly weathered layer, 324 Ωm–926 Ωm for partly weathered and 913 Ωm–2579 Ωm for fresh bedrock). The electrical resistivity imaging including the surface topography provides spatial variations in electrical properties of the weathered/unweathered layers since resistivity depends on the properties of a material rather than its thickness. ERT sections were integrated with JPM and magnetic method to delineate the main faults (F1, F2 and F3). ERT sections show a geometric relationship between different layered boundaries, particularly those of the aquifers with fresh basement and surface topographies. These layers comprise an overburden of 50 m thickness revealed by ERT sections. The results show that weathered and partly weathered layers between the topographic surface and bed rock yield maximum aquifer potential in the study area. ERT imaging method provides promising input to groundwater evaluation in the areas of weathered environment with complex geology.
Journal Article
Review and Future Perspective of Geophysical Methods Applied in Nearshore Site Characterization
2022
Seabed surveying is the basis of engineering development in shallow waters. At present, geophysical survey methods mainly utilize sonars for qualitative surveying, which requires the calibration of the results found through in situ drilling and sampling. Among them, the parameters required for engineering designs are obtained from either in situ tests or laboratory experiments of soil samples retrieved from drilling. However, the experience from onshore applications shows that the physical quantities obtained through quantitative geophysical survey methods for shallow waters can be indirectly used to estimate engineering parameters or directly as parameters for engineering evaluation, which has high application potential. This review analyzes various geophysical survey methods for nearshore site characterization (i.e., side-scan sonar, single/multi- beam sonar, sub-bottom profiler, seismic reflection method, and underwater magnetometer) and challenges in their application, and introduces quantitative geophysical survey methods (including the underwater seismic refraction method, seismic surface wave method and underwater electrical resistivity tomography) that are worth focusing on for future development. Three application difficulties have been identified, namely, the lack of operational efficiency, appropriate operational equipment and systems, and sufficient guidance for experimental shallow sea applications. It is hoped that comprehensive discussion of these challenges will increase awareness leading to engineering improvements in the surveying and measuring capabilities in shallow waters, further reducing the risk of geotechnical hazards.
Journal Article