Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
5,869 result(s) for "Geophysics Fluid models."
Sort by:
Global atmospheric and oceanic modelling : fundamental equations
\"Global Atmospheric and Oceanic Modelling Combining rigorous theory with practical application, this book provides a unified and detailed account of the fundamental equations governing atmospheric and oceanic fluid flow on which global, quantitative models of weather and climate prediction are founded. It lays the foundation for more accurate models by making fewer approximations and imposing dynamical and thermodynamical consistency, moving beyond the assumption that the Earth is perfectly spherical. A general set of equations is developed in a standard notation with clearly stated assumptions, limitations, and important properties. Some exact, non-linear solutions are developed to promote further understanding and for testing purposes. This book contains a thorough consideration of the fundamental equations for atmospheric and oceanic models, and is therefore invaluable to both theoreticians and numerical modellers. It also stands as an accessible source for reference purposes. Andrew N. Staniforth - now retired - led the development of dynamical cores for weather and climate prediction at two national centres (Canada and the UK). He has published over 100 peer-reviewed journal articles, and is the recipient of various prizes and awards including: the Editor's Award (American Meteorological Society, 1990); the Andrew Thompson Prize (Canadian Meteorological and Oceanographic Society, 1993); and the Buchan and Adrian Gill Prizes (Royal Meteorological Society, 2007 and 2009)\"-- Provided by publisher.
Discrete Inverse and State Estimation Problems
The problems of making inferences about the natural world from noisy observations and imperfect theories occur in almost all scientific disciplines. This 2006 book addresses these problems using examples taken from geophysical fluid dynamics. It focuses on discrete formulations, both static and time-varying, known variously as inverse, state estimation or data assimilation problems. Starting with fundamental algebraic and statistical ideas, the book guides the reader through a range of inference tools including the singular value decomposition, Gauss-Markov and minimum variance estimates, Kalman filters and related smoothers, and adjoint (Lagrange multiplier) methods. The final chapters discuss a variety of practical applications to geophysical flow problems. Discrete Inverse and State Estimation Problems is an ideal introduction to the topic for graduate students and researchers in oceanography, meteorology, climate dynamics, and geophysical fluid dynamics. It is also accessible to a wider scientific audience; the only prerequisite is an understanding of linear algebra.
Advances in environmental fluid mechanics
Environmental fluid mechanics (EFM) is the scientific study of transport, dispersion and transformation processes in natural fluid flows on our planet Earth, from the microscale to the planetary scale. This book brings together scientists and engineers working in research institutions, universities and academia, who engage in the study of theoretical, modeling, measuring and software aspects in environmental fluid mechanics. It provides a forum for the participants, and exchanges new ideas and expertise through the presentations of up-to-date and recent overall achievements in this field.
Modeling the transport of nutrients and sediment loads into Lake Tahoe under projected climatic changes
The outputs from two General Circulation Models (GCMs) with two emissions scenarios were downscaled and bias-corrected to develop regional climate change projections for the Tahoe Basin. For one model—the Geophysical Fluid Dynamics Laboratory or GFDL model—the daily model results were used to drive a distributed hydrologic model. The watershed model used an energy balance approach for computing evapotranspiration and snowpack dynamics so that the processes remain a function of the climate change projections. For this study, all other aspects of the model (i.e. land use distribution, routing configuration, and parameterization) were held constant to isolate impacts of climate change projections. The results indicate that (1) precipitation falling as rain rather than snow will increase, starting at the current mean snowline, and moving towards higher elevations over time; (2) annual accumulated snowpack will be reduced; (3) snowpack accumulation will start later; and (4) snowmelt will start earlier in the year. Certain changes were masked (or counter-balanced) when summarized as basin-wide averages; however, spatial evaluation added notable resolution. While rainfall runoff increased at higher elevations, a drop in total precipitation volume decreased runoff and fine sediment load from the lower elevation meadow areas and also decreased baseflow and nitrogen loads basin-wide. This finding also highlights the important role that the meadow areas could play as high-flow buffers under climatic change. Because the watershed model accounts for elevation change and variable meteorological patterns, it provided a robust platform for evaluating the impacts of projected climate change on hydrology and water quality.
A Review of the Principles and Applications of the NMR Technique for Near-Surface Characterization
This paper presents a comprehensive review of the recent advances in nuclear magnetic resonance (NMR) measurements for near-surface characterization using laboratory, borehole, and field technologies. During the last decade, NMR has become increasingly popular in near-surface geophysics due to substantial improvements in instrumentation, data processing, forward modeling, inversion, and measurement techniques. This paper starts with a description of the principal theory and applications of NMR. It presents a basic overview of near-surface NMR theory in terms of its physical background and discusses how NMR relaxation times are related to different relaxation processes occurring in porous media. As a next step, the recent and seminal near-surface NMR developments at each scale are discussed, and the limitations and challenges of the measurement are examined. To represent the growth of applications of near-surface NMR, case studies in a variety of different near-surface environments are reviewed and, as examples, two recent case studies are discussed in detail. Finally, this review demonstrates that there is a need for continued research in near-surface NMR and highlights necessary directions for future research. These recommendations include improving the signal-to-noise ratio, reducing the effective measurement dead time, and improving production rate of surface NMR (SNMR), reducing the minimum echo time of borehole NMR (BNMR) measurements, improving petrophysical NMR models of hydraulic conductivity and vadose zone parameters, and understanding the scale dependency of NMR properties.
Geofluid Discrimination Incorporating Poroelasticity and Seismic Reflection Inversion
Geofluid discrimination plays an important role in the fields of hydrogeology, geothermics, and exploration geophysics. A geofluid discrimination approach incorporating linearized poroelasticity theory and pre-stack seismic reflection inversion with Bayesian inference is proposed in this study to identify the types of geofluid underground. Upon the review of the development of different geofluid indicators, the fluid modulus is defined as the geofluid indicator mainly affected by the fluid contained in reservoirs. A novel linearized P-wave reflectivity equation coupling the fluid modulus is derived to avoid the complicated nonlinear relationship between the fluid modulus and seismic data. Model examples illustrate the accuracy of the proposed linearized P-wave reflectivity equation comparing to the exact P-wave reflectivity equation even at moderate incident angle, which satisfies the requirements of the parameter estimations with P-wave pre-stack seismic data. Convoluting this linearized P-wave reflectivity equation with seismic wavelets as the forward solver, a pragmatic pre-stack Bayesian seismic inversion method is presented to estimate the fluid modulus directly. Cauchy and Gaussian probability distributions are utilized for prior information of the model parameters and the likelihood function, respectively, to enhance the inversion resolution. The preconditioned conjugate gradient method is coupled in the optimization of the objective function to weaken the strong degree of correlation among the four model parameters and enhance the stability of those parameter estimations simultaneously. The synthetic examples demonstrate the feasibility and stability of the proposed novel seismic coefficient equation and inversion approach. The real data set illustrates the efficiency and success of the proposed approach in differentiating the geofluid filled reservoirs.
Fluid transport and storage in the Cascadia forearc influenced by overriding plate lithology
Subduction of hydrated oceanic lithosphere can carry water deep into the Earth, with consequences for a range of tectonic and magmatic processes. Most of the fluid is released in the forearc where it plays a critical role in controlling the mechanical properties and seismic behaviour of the subduction megathrust. Here we present results from three-dimensional inversions of data from nearly 400 long-period magnetotelluric sites, including 64 offshore, to provide insights into the distribution of fluids in the forearc of the Cascadia subduction zone. We constrain the geometry of the electrically resistive Siletz terrane, a thickened section of oceanic crust accreted to North America in the Eocene, and the conductive accretionary complex underthrust along the margin. We find that fluids accumulate over timescales exceeding 1 My above the plate in metasedimentary units, while the mafic rocks of Siletzia remain dry. Fluid concentrations tend to peak at slab depths of 17.5 and 30 km, suggesting control by metamorphic processes, but also concentrate around the edges of Siletzia, suggesting that this mafic block is impermeable, with dehydration fluids escaping up-dip along the megathrust. Our results demonstrate that the lithology of the overriding crust can play a critical role in controlling fluid transport in a subduction zone. The lithology of the overriding plate plays a critical role in determining fluid transport in subduction zones, according to magnetotelluric imaging of the impact of the dry, mafic Siletzia terrane on fluids in the Cascadia subduction zone, North America.
An Integrated Approach to Unravel the Structural Controls on Groundwater Potentialities in Hyper-arid Regions Using Satellite and Land-Based Geophysics: A Case Study in Southwestern Desert of Egypt
Groundwater exploration is the most promising way to overcome water scarcity in hyper-arid regions around the world. Due to the scarcity of hydrogeological information in these regions, groundwater exploration is a challenging issue requiring the joint application of satellite and land-based information to delineate the groundwater aquifers in such harsh environments. In this research, an integrative approach was undertaken for groundwater exploration in the southwestern corner of Egypt as one of the most hyper-arid regions in North Africa. To fill the knowledge gap in this large area, two high-resolution satellite gravity datasets (EIGEN-6C4 and TOPEX-1min) were employed in combination with land-based geophysical surveys for a better understanding of groundwater potentialities in terms of structural controls. Further, the approaches of high-pass filter, tilt angle derivative, and enhanced horizontal gradient amplitude were used to analyze EIGEN-6C4 dataset. Additionally, 2D and 3D models along with a high-pass filtered gravity map were constructed to provide the subsurface barriers and preferential groundwater flow pathways. Several NNE windows have been recognized, particularly to the east of Gabel Kamel along Uweinat-Aswan uplifting allowing groundwater flow along northeastern structural trends. To verify this assumption, land-based magnetic and DC resistivity sounding surveys were executed at two selected sites based on the interpretation of satellite gravity and remote sensing data. The resistivity and 2D magnetic modeling reveal the presence of remarkable sub-basins with sufficient saturated sedimentary cover. Ultimately, the review of the different datasets, including satellite gravity and land-based geophysical investigations, facilitated the geological interpretation for detecting the structural controls on the groundwater flow paths and produced satisfactory results at shorter time frames and lower costs compared to typical groundwater exploration in arid or hyper-arid regions of the same characteristics elsewhere.
Potential Field Imaging of Salt and Basement Structures in the Southern Zagros Foreland Basin
The blind and exposed salt domes in the Fars Arc of the south-eastern Zagros Fold and Thrust Belt, are rooted in the Precambrian–Early Cambrian Hormuz Salt, which deposited over a Precambrian crystalline basement. To define the subsurface blind salt domes and examine the influences of the basement morphology on the distribution of the salt domes and their impact on hydrocarbon accumulation, we used high–resolution terrestrial magnetic and gravity data. Applying various derivative–based filters on the Bouguer gravity anomalies we identified seven blind salt domes. From those, two have characteristic topographic implications and another three have been also imaged by the earlier seismic studies. A low Bouguer anomaly with a prominence sharp variation limits the western extent of the overlying allochthonous Late Oligocene–Early Miocene Fars Salt layer. The horizontal derivative of the Bouguer anomaly highlights a distinctive lineament in the south of the Bander–e–Lengeh anticline, which is interpreted as the effect of the Fars Salt layer on folding and faulting propagation. The magnetic anomalies were not effective for detecting blind salt domes due to the presence of highly magnetised crystalline basement rock fragments within salt domes, yielding an unexpected non-zero susceptibility value similar to the surrounding sedimentary layers. This indicates the influence of crystalline basement dynamics on salt tectonism in the study area. The N–S trend of the long-wavelength magnetic anomaly of the Hendurabi Lineament extends east of the study area and reflects a basement structure. The integrated E–W gravity–magnetic forward modelling implies an N–S trending horst–graben structure in the crystalline basement, which controls the thickness of the Hormuz salt and possibly the distribution of salt domes.
Tectonic elements and structural framework deduced from magnetic data of the Southern Desert, Iraq
The Iraq Southern Desert (SD) needs detailed studies to explore the subsurface, especially the deep and concealed basement. The aim of this work is to interpret the airborne magnetic survey data of the SD, which has a thick Phanerozoic sedimentary cover. The basement has not been imaged by deep seismic or even accessed by exploration wells. Magnetic edge-detection filters: total horizontal gradient, improved logistic, and second-vertical gradient (in the form of the signum transform) are utilized to help define the structural framework of the basement. The results of edge-detection filters are utilized in determining basement-dominated fault systems and aid in defining magnetic susceptibility boundaries. We have found a remarkable relationship between the interpreted fault systems and previously drilled hydrocarbon wells that could be used to indicate fault-bound structural traps. The results of edge filters also show linear clustering of magnetic structures that may indicate a distinctive phenomenon characterized old and reworked basement. The calculated magnetic susceptibilities utilizing two-dimensional forward modeling are consistent with metamorphic rocks and igneous intrusions. Further, two north–south-trending magnetic zones are displaced by a northeast-southwest-trending strike-slip movement. These zones are here considered as the northward projection of the Ediacaran Al Amar Suture in Iraq. We suggest a novel approach that combines edge-detection filters with a depth estimation method that can be successfully applied to discovering the stable (inner) parts of platforms with deep and concealed basements.