Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
7,779 result(s) for "Gibberellins"
Sort by:
Morphological Changes to Fruit Development Induced by GAsub.3 Application in Sweet Cherry
Cherry (Prunus avium) fruits are important sources of vitamins, minerals, and nutrients in the human diet; however, they contain a large stone, making them inconvenient to eat ‘on the move’ and process. The exogenous application of gibberellic acid (GA[sub.3]) can induce parthenocarpy in a variety of fruits during development. Here, we showed that the application of GA[sub.3] to sweet cherry unpollinated pistils acted as a trigger for fruit set and permitted the normal formation of fruit up to a period of twenty-eight days, indicating that gibberellins are involved in the activation of the cell cycle in the ovary wall cells, leading to fruit initiation. However, after this period, fruit development ceased and developing fruit began to be excised from the branch by 35 days post treatment. This work also showed that additional signals are required for the continued development of fully mature parthenocarpic fruit in sweet cherry.
Novel Strigolactone Mimics That Modulate Photosynthesis and Biomass Accumulation in IChlorella sorokiniana/I
In terrestrial plants, strigolactones act as multifunctional endo- and exo-signals. On microalgae, the strigolactones determine akin effects: induce symbiosis formation with fungi and bacteria and enhance photosynthesis efficiency and accumulation of biomass. This work aims to synthesize and identify strigolactone mimics that promote photosynthesis and biomass accumulation in microalgae with biotechnological potential. Novel strigolactone mimics easily accessible in significant amounts were prepared and fully characterized. The first two novel compounds contain 3,5-disubstituted aryloxy moieties connected to the bioactive furan-2-one ring. In the second group of compounds, a benzothiazole ring is connected directly through the cyclic nitrogen atom to the bioactive furan-2-one ring. The novel strigolactone mimics were tested on Chlorella sorokiniana NIVA-CHL 176. All tested strigolactones increased the accumulation of chlorophyll b in microalgae biomass. The SL-F3 mimic, 3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yl)-3H-benzothiazol-2-one (7), proved the most efficient. This compound, applied at a concentration of 10[sup.−7] M, determined a significant biomass accumulation, higher by more than 15% compared to untreated control, and improved the quantum yield efficiency of photosystem II. SL-F2 mimic, 5-(3,5-dibromophenoxy)-3-methyl-5H-furan-2-one (4), applied at a concentration of 10[sup.−9] M, improved protein production and slightly stimulated biomass accumulation. Potential utilization of the new strigolactone mimics as microalgae biostimulants is discussed.
Gibberellin Acts Positively Then Negatively to Control Onset of Flower Formation in Arabidopsis
The switch to reproductive development is biphasic in many plants, a feature important for optimal pollination and yield. We show that dual opposite roles of the phytohormone gibberellin underpin this phenomenon in Arabidopsis. Although gibberellin promotes termination of vegetative development, it inhibits flower formation. To overcome this effect, the transcription factor LEAFY induces expression of a gibberellin catabolism gene; consequently, increased LEAFY activity causes reduced gibberellin levels. This allows accumulation of gibberellin-sensitive DELLA proteins. The DELLA proteins are recruited by SQUAMOSA PROMOTER BINDING PROTEIN–LIKE transcription factors to regulatory regions of the floral commitment gene APETALA1 and promote APETALA1 up-regulation and floral fate synergistically with LEAFY. The two opposing functions of gibberellin may facilitate evolutionary and environmental modulation of plant inflorescence architecture.
Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth
Plant growth promoting endophytic bacteria have been identified as potential growth regulators of crops. Endophytic bacterium, Sphingomonas sp. LK11, was isolated from the leaves of Tephrosia apollinea. The pure culture of Sphingomonas sp. LK11 was subjected to advance chromatographic and spectroscopic techniques to extract and isolate gibberellins (GAs). Deuterated standards of [17, 17-²H₂]-GA₄, [17, 17-²H₂]-GA₉ and [17, 17-²H₂]-GA₂₀ were used to quantify the bacterial GAs. The analysis of the culture broth of Sphingomonas sp. LK11 revealed the existence of physiologically active gibberellins (GA₄: 2.97 ± 0.11 ng/ml) and inactive GA₉ (0.98 ± 0.15 ng/ml) and GA₂₀ (2.41 ± 0.23). The endophyte also produced indole acetic acid (11.23 ± 0.93 μM/ml). Tomato plants inoculated with endophytic Sphingomonas sp. LK11 showed significantly increased growth attributes (shoot length, chlorophyll contents, shoot, and root dry weights) compared to the control. This indicated that such phyto-hormones-producing strains could help in increasing crop growth.
Mapping sites of gibberellin biosynthesis in the Arabidopsis root tip
• Root elongation depends on the action of the gibberellin (GA) growth hormones, which promote cell production in the root meristem and cell expansion in the elongation zone. Sites of GA biosynthesis in the roots of 7-d-old Arabidopsis thaliana seedlings were investigated using tissue-specific GA inactivation in wild-type (Col-0) or rescue of GA-deficient dwarf mutants. • Tissue-specific GA depletion was achieved by ectopic expression of the GA-inactivating enzyme AtGA2ox2, which is specific for C19-GAs, and AtGA2ox7, which acts on C20-GA precursors. In addition, tissue-specific rescue of ga20ox triple and ga3ox double mutants was shown. Furthermore, GUS reporter lines for major GA20ox, GA3ox and GA2ox genes were used to observe their expression domains in the root. • The effects of expressing these constructs on the lengths of the root apical meristem and cortical cells in the elongation zone confirmed that roots are autonomous for GA biosynthesis, which occurs in multiple tissues, with the endodermis a major site of synthesis. • The results are consistent with the early stages of GA biosynthesis within the root occurring in the meristematic region and indicate that the penultimate step of GA biosynthesis, GA 20-oxidation, is required in both the meristem and elongation zone.
Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: functional characterization and evolution of grapevine gibberellin oxidases
Gibberellins (GAs) are involved in the regulation of flowering and fruit-set in grapes (Vitis vinifera L.), but the molecular mechanisms behind this process are mostly unknown. In this work, the family of grapevine GA oxidases involved in the biosynthesis and deactivation of GAs was characterized. Six putative GA 20-oxidase (GA20ox), three GA 3-oxidase (GA3ox), and eight GA 2-oxidase (GA2ox) proteins, the latter further divided into five C19-GA 2ox and three C20-GA2ox proteins, were identified. Phylogenetic analyses suggest a common origin of the GA3ox and C19-GA2ox groups and challenge previous evolutionary models. In vitro analysis revealed that all GA3ox and GA20ox enzymes prefer substrates of the non-13-hydroxylation pathway. In addition, ectopic expression of GA2ox genes in Arabidopsis thaliana confirmed the activity of their encoded proteins in vivo. The results show that bioactive GA1 accumulates in opening grapevine flowers, whereas at later developmental stages only GA4 is detected in the setting fruit. By studying the expression pattern of the grapevine GA oxidase genes in different organs, and at different stages of flowering and fruit-set, it is proposed that the pool of bioactive GAs is controlled by a fine regulation of the abundance and localization of GA oxidase transcripts.
Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin
Huanglongbing (HLB) is a devastating disease of citrus, caused by the phloem-colonizing bacterium Candidatus Liberibacter asiaticus (CLas). Here, we present evidence that HLB is an immune-mediated disease. We show that CLas infection of Citrus sinensis stimulates systemic and chronic immune responses in phloem tissue, including callose deposition, production of reactive oxygen species (ROS) such as H 2 O 2 , and induction of immunity-related genes. The infection also upregulates genes encoding ROS-producing NADPH oxidases, and downregulates antioxidant enzyme genes, supporting that CLas causes oxidative stress. CLas-triggered ROS production localizes in phloem-enriched bark tissue and is followed by systemic cell death of companion and sieve element cells. Inhibition of ROS levels in CLas-positive stems by NADPH oxidase inhibitor diphenyleneiodonium (DPI) indicates that NADPH oxidases contribute to CLas-triggered ROS production. To investigate potential treatments, we show that addition of the growth hormone gibberellin (known to have immunoregulatory activities) upregulates genes encoding H 2 O 2 -scavenging enzymes and downregulates NADPH oxidases. Furthermore, foliar spray of HLB-affected citrus with gibberellin or antioxidants (uric acid, rutin) reduces H 2 O 2 concentrations and cell death in phloem tissues and reduces HLB symptoms. Thus, our results indicate that HLB is an immune-mediated disease that can be mitigated with antioxidants and gibberellin. Huanglongbing is a devastating disease of citrus, caused by phloem-colonizing bacteria. Here, the authors present evidence that the disease is the result of an exacerbated immune response to the infection, including production of reactive oxygen species, and that antioxidants and a growth-promoting hormone can mitigate disease symptoms.
SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice
The breeding of cereals with altered gibberellin (GA) signaling propelled the ‘Green Revolution’ by generating semidwarf plants with increased tiller number. The mechanism by which GAs promote shoot height has been studied extensively, but it is not known what causes the inverse relationship between plant height and tiller number. Here we show that rice tiller number regulator MONOCULM 1 (MOC1) is protected from degradation by binding to the DELLA protein SLENDER RICE 1 (SLR1). GAs trigger the degradation of SLR1, leading to stem elongation and also to the degradation of MOC1, and hence a decrease in tiller number. This discovery provides a molecular explanation for the coordinated control of plant height and tiller number in rice by GAs, SLR1 and MOC1. Due to reduced gibberellin sensitivity, modern rice cultivars are shorter than traditional varieties but produce more tillers and have higher yields. Here Liao et al. show that gibberellin contributes to decreased tiller number by degrading the MOC1 protein that suppresses bud outgrowth.
High- or Low-Yielding Fsub.2 Progeny of Wheat Is Result of Specific ITaCKX/I Gene Coexpression Patterns in Association with Grain Yield in Paternal Parent
Members of the TaCKX gene family (GFM) encode oxidase/dehydrogenase cytokinin degrading enzymes (CKX), which play an important role in the homeostasis of phytohormones, affecting wheat development and productivity. Therefore, the objective of this investigation was to test how the expression patterns of the yield-related TaCKX genes and TaNAC2-5A (NAC2) measured in 7 days after pollination (DAP) spikes and the seedling roots of parents are inherited to apply this knowledge in the breeding process. The expression patterns of these genes were compared between parents and their F2 progeny in crosses of one mother with different paterns of awnless cultivars and reciprocal crosses of awned and awnless lines. We showed that most of the genes tested in the 7 DAP spikes and seedling roots of the F[sub.2] progeny showed paternal expression patterns in crosses of awnless cultivars as well as reciprocal crosses of awned and awnless lines. Consequently, the values of grain yield in the F[sub.2] progeny were similar to the pater; however, the values of seedling root mass were similar to the mother or both parents. The correlation analysis of TaCKX GFMs and NAC2 in spikes and spikes per seedling roots reveals that the genes correlate with each other specifically with the pater and the F[sub.2] progeny or the mother and the F[sub.2] progeny, which shape phenotypic traits. The numbers of spikes and semi-empty spikes are mainly correlated with the specific coexpression of the TaCKX and NAC2 genes expressed in spikes or spikes per roots of the pater and F[sub.2] progeny. Variable regression analysis of grain yield and root mass with TaCKX GFMs and NAC2 expressed in the tested tissues of five crosses revealed a significant dependency of these parameters on the mother and F[sub.2] and/or the pater and F[sub.2] progeny. We showed that the inheritance of yield-related traits depends on the specific cooperative expression of some TaCKX GFMs, in some crosses coupled with NAC2, and is strongly dependent on the genotypes used for the crosses. Indications for parental selection in the breeding of high-yielding lines are discussed.