Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
6,646 result(s) for "Glass construction."
Sort by:
The glass state : the technology of the spectacle Paris, 1981-1998
A study of the technological, theoretical, and cultural significance of the transparency of the glass structures of François Mitterand's Grands Projects in Paris.
Production and provenance of architectural glass from the Umayyad period
A large assemblage (n = 307) of architectural glasses (tesserae and windows) from the early 8th-century Umayyad residential site at Khirbat al-Minya was analysed by laser ablation inductively coupled plasma mass spectrometry. Trace element patterns are essential to establish the provenance of the base glass, while the comparative evaluation of the colouring and opacifying additives allow us to advance a production model for the manufacture of glass mosaic tesserae during the early Islamic period. The primary glass types are Levantine I and Egypt 1a, as well as a few older, reused tesserae, and Mesopotamian plant ash glass used for amber-coloured window fragments. Chemical data revealed fundamental differences in the colouring and opacification technologies between the Egyptian and Levantine tesserae. Co-variations of lead and bismuth, and copper, tin and zinc in the Egypt 1a tesserae provide first evidence for the production of different mosaic colours in a single workshop, specialising in the manufacture of tesserae of different colours. No such trend is apparent in the Levantine samples. Red, cobalt blue and gold leaf tesserae were found to be exclusively made from a Levantine base glass, indicating that the generation of some colours may have been a specialised process. The same may apply to the amber-coloured window glass fragments of Mesopotamian origin that exhibit very unusual characteristics, combining elevated copper (2% CuO) with an excess in iron oxide (5% Fe.sub.2 O.sub.3). These findings have significant implications for the production model of strongly coloured glass and the exploitation of resources during the early Islamic period.
Field Performance Monitoring of Energy-Generating High-Transparency Agrivoltaic Glass Windows
Currently, there are strong and sustained growth trends observed in multi-disciplinary industrial technologies such as building-integrated photovoltaics and agrivoltaics, where renewable energy production is featured in building envelopes of varying degrees of transparency. Novel glass products can provide a combination of thermal energy savings and solar energy harvesting, enabled by either patterned-semiconductor thin-film energy converters on glass substrates, or by using luminescent concentrator-type approaches to achieve high transparency. Significant progress has been demonstrated recently in building integrated solar windows featuring visible light transmission of up to 70%, with electric power outputs of up to Pmax ~ 30–33 Wp/m2. Several slightly different designs were tested during 2021–2023 in a greenhouse installation at Murdoch University in Perth, Western Australia; their long-term energy harvesting performance differences were found to be on the scale of ~10% in wall-mounted locations. Solar greenhouse generated electricity at rates of up to 19 kWh/day, offsetting nearly 40% of energy costs. The objective of this paper is to report on the field performance of these PV windows in the context of agrivoltaics and to provide some detail of the performance differences measured in several solar window designs related to their glazing structure materials. Methods for the identification and quantification of long-term field performance differences and energy generation trends in solar windows of marginally different design types are reported. The paper also aims to outline the practical application potential of these transparent construction materials in built environments, focusing on the measured renewable energy figures and seasonal trends observed during the long-term study.
Imperfect Unions
Highlights the interplay of race, literature, and nation-building in U.S. history.
The Influence of Elastic Support of Component Glass Panes on Deflection and Stress in Insulating Glass Units—Analytical Model
Insulating glass units (IGUs) are the most common filling for external building envelopes. These elements have many advantages related to the thermal protection of buildings. However, some climatic loads are generated or modified due to the sealed gas cavity between the glass panes. The gas enclosed in the cavities changes its parameters under external load, which affects the operational deflection and stress in an IGU. In most computational models describing this phenomenon, the component panes are assumed to be simply supported on the edge spacer, which is considered a sufficient approximation. This article, which continues previous work, assumes that the component glass panes can be supported elastically at the edges. The parameter describing this connection is rotational stiffness. Based on the theory of linear–elastic plates, coefficients were determined to calculate the change in cavity volume, deflection, and stress in glass panes. Then, the results of calculations of the influence of rotational stiffness and static values in exemplary IGUs of various structures, loaded with changes in atmospheric pressure and wind, are presented. It was found that a feedback loop occurs here. The deflection and stress in elastically supported single panes are lower than in the case of those simply supported. However, the lower susceptibility to deflection of the component panes weakens the gas interaction in the cavity, and the resultant load on these panes increases. The influence of rotational stiffness on the resulting static values may therefore vary. In the analyzed examples, this influence was primarily negative for symmetrical loads and clearly positive for wind loads.