Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
8
result(s) for
"Glaucophyta - chemistry"
Sort by:
Ion and metabolite transport in the chloroplast of algae: lessons from land plants
by
Marchand, Justine
,
Schoefs, Benoît
,
Heydarizadeh, Parisa
in
Algae
,
Aquatic plants
,
autotrophs
2018
Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga
Chlamydomonas reinhardtii
, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.
Journal Article
Expression of the Nucleus-Encoded Chloroplast Division Genes and Proteins Regulated by the Algal Cell Cycle
2012
Chloroplasts have evolved from a cyanobacterial endosymbiont and their continuity has been maintained by chloroplast division, which is performed by the constriction of a ring-like division complex at the division site. It is believed that the synchronization of the endosymbiotic and host cell division events was a critical step in establishing a permanent endosymbiotic relationship, such as is commonly seen in existing algae. In the majority of algal species, chloroplasts divide once per specific period of the host cell division cycle. In order to understand both the regulation of the timing of chloroplast division in algal cells and how the system evolved, we examined the expression of chloroplast division genes and proteins in the cell cycle of algae containing chloroplasts of cyanobacterial primary endosymbiotic origin (glaucophyte, red, green, and streptophyte algae). The results show that the nucleus-encoded chloroplast division genes and proteins of both cyanobacterial and eukaryotic host origin are expressed specifically during the S phase, except for FtsZ in one graucophyte alga. In this glaucophyte alga, FtsZ is persistently expressed throughout the cell cycle, whereas the expression of the nucleus-encoded MinD and MinE as well as FtsZ ring formation are regulated by the phases of the cell cycle. In contrast to the nucleus-encoded division genes, it has been shown that the expression of chloroplast-encoded division genes is not regulated by the host cell cycle. The endosymbiotic gene transfer of minE and minD from the chloroplast to the nuclear genome occurred independently on multiple occasions in distinct lineages, whereas the expression of nucleus-encoded MIND and MINE is regulated by the cell cycle in all lineages examined in this study. These results suggest that the timing of chloroplast division in algal cell cycle is restricted by the cell cycle-regulated expression of some but not all of the chloroplast division genes. In addition, it is suggested that the regulation of each division-related gene was established shortly after the endosymbiotic gene transfer, and this event occurred multiple times independently in distinct genes and in distinct lineages.
Journal Article
Phycobilisomes and Phycobiliproteins in the Pigment Apparatus of Oxygenic Photosynthetics: From Cyanobacteria to Tertiary Endosymbiosis
2023
Eukaryotic photosynthesis originated in the course of evolution as a result of the uptake of some unstored cyanobacterium and its transformation to chloroplasts by an ancestral heterotrophic eukaryotic cell. The pigment apparatus of Archaeplastida and other algal phyla that emerged later turned out to be arranged in the same way. Pigment-protein complexes of photosystem I (PS I) and photosystem II (PS II) are characterized by uniform structures, while the light-harvesting antennae have undergone a series of changes. The phycobilisome (PBS) antenna present in cyanobacteria was replaced by Chl a/b- or Chl a/c-containing pigment–protein complexes in most groups of photosynthetics. In the form of PBS or phycobiliprotein aggregates, it was inherited by members of Cyanophyta, Cryptophyta, red algae, and photosynthetic amoebae. Supramolecular organization and architectural modifications of phycobiliprotein antennae in various algal phyla in line with the endosymbiotic theory of chloroplast origin are the subject of this review.
Journal Article
Classification, Naming and Evolutionary History of Glycosyltransferases from Sequenced Green and Red Algal Genomes
by
Harholt, Jesper
,
Ulvskov, Peter
,
Paiva, Dionisio Soares
in
Algae
,
Archaeplastida
,
Biochemistry
2013
The Archaeplastida consists of three lineages, Rhodophyta, Virideplantae and Glaucophyta. The extracellular matrix of most members of the Rhodophyta and Viridiplantae consists of carbohydrate-based or a highly glycosylated protein-based cell wall while the Glaucophyte covering is poorly resolved. In order to elucidate possible evolutionary links between the three advanced lineages in Archaeplastida, a genomic analysis was initiated. Fully sequenced genomes from the Rhodophyta and Virideplantae and the well-defined CAZy database on glycosyltransferases were included in the analysis. The number of glycosyltransferases found in the Rhodophyta and Chlorophyta are generally much lower then in land plants (Embryophyta). Three specific features exhibited by land plants increase the number of glycosyltransferases in their genomes: (1) cell wall biosynthesis, the more complex land plant cell walls require a larger number of glycosyltransferases for biosynthesis, (2) a richer set of protein glycosylation, and (3) glycosylation of secondary metabolites, demonstrated by a large proportion of family GT1 being involved in secondary metabolite biosynthesis. In a comparative analysis of polysaccharide biosynthesis amongst the taxa of this study, clear distinctions or similarities were observed in (1) N-linked protein glycosylation, i.e., Chlorophyta has different mannosylation and glucosylation patterns, (2) GPI anchor biosynthesis, which is apparently missing in the Rhodophyta and truncated in the Chlorophyta, (3) cell wall biosynthesis, where the land plants have unique cell wall related polymers not found in green and red algae, and (4) O-linked glycosylation where comprehensive orthology was observed in glycosylation between the Chlorophyta and land plants but not between the target proteins.
Journal Article
Phylogenetic analysis of proteins involved in the stringent response in plant cells
by
Ito, Doshun
,
Ihara, Yuta
,
Masuda, Shinji
in
Bacteria
,
Bacteria - enzymology
,
Bacteria - genetics
2017
The nucleotide (p)ppGpp is a second messenger that controls the stringent response in bacteria. The stringent response modifies expression of a large number of genes and metabolic processes and allows bacteria to survive under fluctuating environmental conditions. Recent genome sequencing analyses have revealed that genes responsible for the stringent response are also found in plants. These include (p)ppGpp synthases and hydrolases, RelA/SpoT homologs (RSHs), and the pppGpp-specific phosphatase GppA/Ppx. However, phylogenetic relationship between enzymes involved in bacterial and plant stringent responses is as yet generally unclear. Here, we investigated the origin and evolution of genes involved in the stringent response in plants. Phylogenetic analysis and primary structures of RSH homologs from different plant phyla (including Embryophyta, Charophyta, Chlorophyta, Rhodophyta and Glaucophyta) indicate that
RSH
gene families were introduced into plant cells by at least two independent lateral gene transfers from the bacterial Deinococcus-Thermus phylum and an unidentified bacterial phylum; alternatively, they were introduced into a proto-plant cell by a lateral gene transfer from the endosymbiotic cyanobacterium followed by gene loss of an ancestral
RSH
gene in the cyanobacterial linage. Phylogenetic analysis of
gppA
/
ppx
families indicated that plant
gppA
/
ppx
homologs form an individual cluster in the phylogenetic tree, and show a sister relationship with some bacterial
gppA
/
ppx
homologs. Although RSHs contain a plastidial transit peptide at the N terminus, GppA/Ppx homologs do not, suggesting that plant GppA/Ppx homologs function in the cytosol. These results reveal that a proto-plant cell obtained genes for the stringent response by lateral gene transfer events from different bacterial phyla and have utilized them to control metabolism in plastids and the cytosol.
Journal Article
Signal Conflicts in the Phylogeny of the Primary Photosynthetic Eukaryotes
2009
It is widely accepted that the first photosynthetic eukaryotes arose from a single primary endosymbiosis of a cyanobacterium in a phagotrophic eukaryotic host, which led to the emergence of three major lineages: Chloroplastida (green algae and land plants), Rhodophyta, and Glaucophyta. For a long time, Glaucophyta have been thought to represent the earliest branch among them. However, recent massive phylogenomic analyses of nuclear genes have challenged this view, because most of them suggested a basal position of Rhodophyta, though with moderate statistical support. We have addressed this question by phylogenomic analysis of a large data set of 124 proteins transferred from the chloroplast to the nuclear genome of the three Archaeplastida lineages. In contrast to previous analyses, we found strong support for the basal emergence of the Chloroplastida and the sister-group relationship of Glaucophyta and Rhodophyta. Moreover, the reanalysis of chloroplast gene sequences using methods more robust against compositional and evolutionary rate biases sustained the same result. Finally, we observed that the basal position of Rhodophyta found in the phylogenies based on nuclear genes depended on the sampling of sequences used as outgroup. When eukaryotes supposed to have never had plastids (animals and fungi) were used, the analysis strongly supported the early emergence of Glaucophyta instead of Rhodophyta. Therefore, there is a conflicting signal between genes of different evolutionary origins supporting either the basal branching of Glaucophyta or of Chloroplastida within the Archaeplastida. This second possibility would agree with the existence of the subkingdom Biliphyta, joining Glaucophyta and Rhodophyta.
Journal Article
rhodopsin-like protein in Cyanophora paradoxa: gene sequence and protein immunolocalization
by
Passarelli, Vincenzo
,
Barsanti, Laura
,
Evangelista, Valtere
in
Algae
,
Amino Acid Sequence
,
antigens
2010
Here, we report the DNA sequence of the rhodopsin gene in the alga Cyanophora paradoxa (Glaucophyta). The primers were designed according to the conserved regions of prokaryotic and eukaryotic rhodopsin-like proteins deposited in the GenBank. The sequence consists of 1,272 bp comprised of 5 introns. The correspondent protein, named Cyanophopsin, showed high identity to rhodopsin-like proteins of Archea, Bacteria, Fungi, and Algae. At the N-terminal, the protein is characterized by a region with no transmembrane α-helices (80 aa), followed by a region with 7α-helices (219 aa) and a shorter 35-aa C-terminal region. The DNA sequence of the N-terminal region was expressed in E. coli and the recombinant purified peptide was used as antigen in hens to obtain polyclonal antibodies. Indirect immunofluorescence in C. paradoxa cells showed a marked labeling of the muroplast (aka cyanelle) membrane.
Journal Article
Oxygenic photosynthesis and the distribution of chloroplasts
2011
The integrated functioning of two photosystems (I and II) whether in cyanobacteria or in chloroplasts is the outstanding sign of a common ancestral origin. Many variations on the basic theme are currently evident in oxygenic photosynthetic organisms whether they are prokaryotes, unicellular, or multicellular. By conservative estimates, oxygenic photosynthesis has been around for at least ca. 2.2-2.7 billions years, consistent with cyanobacteria-type microfossils, biomarkers, and an atmospheric rise in oxygen to less than 1.0% of the present concentration. The presumptions of chloroplast formation by the cyanobacterial uptake into a eukaryote prior to 1.6 BYa ago are confounded by assumptions of host type(s) and potential tolerance of oxygen toxicity. The attempted dating and interrelationships of particular chloroplasts in various plant or animal lineages has relied heavily on phylogenomic analysis and evaluations that have been difficult to confirm separately. Many variations occur in algal groups, involving the type and number of accessory pigments, and the number(s) of membranes (2-4) enclosing a chloroplast, which can both help and complicate inferences made about early or late origins of chloroplasts. Integration of updated phylogenomics with physiological and cytological observations remains a special challenge, but could lead to more accurate assumptions of initial and extant endosymbiotic event(s) leading toward stable chloroplast associations.
Journal Article