Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
882
result(s) for
"Glioblastoma (GBM)"
Sort by:
Tumor Development and Angiogenesis in Adult Brain Tumor: Glioblastoma
by
Ahir, Bhavesh K
,
Lakka, Sajani S
,
Engelhard, Herbert H
in
Angiogenesis
,
Blood vessels
,
Brain cancer
2020
Angiogenesis is the growth of new capillaries from the preexisting blood vessels. Glioblastoma (GBM) tumors are highly vascularized tumors, and glioma growth depends on the formation of new blood vessels. Angiogenesis is a complex process involving proliferation, migration, and differentiation of vascular endothelial cells (ECs) under the stimulation of specific signals. It is controlled by the balance between its promoting and inhibiting factors. Various angiogenic factors and genes have been identified that stimulate glioma angiogenesis. Therefore, attention has been directed to anti-angiogenesis therapy in which glioma proliferation is inhibited by inhibiting the formation of new tumor vessels using angiogenesis inhibitory factors and drugs. Here, in this review, we highlight and summarize the various molecular mediators that regulate GBM angiogenesis with focus on recent clinical research on the potential of exploiting angiogenic pathways as a strategy in the treatment of GBM patients.
Journal Article
Bisdemethoxycurcumin Induces Cell Apoptosis and Inhibits Human Brain Glioblastoma GBM 8401/Luc2 Cell Xenograft Tumor in Subcutaneous Nude Mice In Vivo
by
Fu-Shin Chueh
,
Kung-Wen Lu
,
Shu-Fen Peng
in
Animals
,
Antineoplastic Agents, Phytogenic - pharmacology
,
Apoptosis
2022
Bisdemethoxycurcumin (BDMC) has biological activities, including anticancer effects in vitro; however, its anticancer effects in human glioblastoma (GBM) cells have not been examined yet. This study aimed to evaluate the tumor inhibitory effect and molecular mechanism of BDMC on human GBM 8401/luc2 cells in vitro and in vivo. In vitro studies have shown that BDMC significantly reduced cell viability and induced cell apoptosis in GBM 8401/luc2 cells. Furthermore, BDMC induced apoptosis via inhibited Bcl-2 (anti-apoptotic protein) and increased Bax (pro-apoptotic proteins) and cytochrome c release in GBM 8401/luc2 cells in vitro. Then, twelve BALB/c-nude mice were xenografted with human glioblastoma GBM 8401/luc2 cancer cells subcutaneously, and the xenograft nude mice were treated without and with BDMC (30 and 60 mg/kg of BDMC treatment) every 3 days. GBM 8401/luc2 cell xenografts experiment showed that the growth of the tumors was significantly suppressed by BDMC administration at both doses based on the reduction of tumor size and weights. BDMC did not change the body weight and the H&E histopathology analysis of liver samples, indicating that BDMC did not induce systemic toxicity. Meanwhile, treatment with BDMC up-regulated the expressions of BAX and cleaved caspase-3, while it down-regulated the protein expressions of Bcl-2 and XIAP in the tumor tissues compared with the control group. This study has demonstrated that BDMC presents potent anticancer activity on the human glioblastoma GBM 8401/luc2 cell xenograft model by inducing apoptosis and inhibiting tumor cell proliferation and shows the potential for further development to the anti-GBM cancer drug.
Journal Article
Managing the TME to improve the efficacy of cancer therapy
by
Bilotta, Maria Teresa
,
Antignani, Antonella
,
Fitzgerald, David J.
in
Adenocarcinoma
,
anti-cancer therapy
,
Antigens
2022
The tumor microenvironment (TME) influences tumor growth, metastatic spread and response to treatment. Often immunosuppression, mediated by the TME, impairs a beneficial response. The complexity of the tumor composition challenges our abilities to design new and more effective therapies. Going forward we will need to ‘manage’ the content and or functionality of the TME to improve treatment outcomes. Currently, several different kinds of treatments are available to patients with cancer: there are the traditional approaches of chemotherapy, radiation and surgery; there are targeted agents that inhibit kinases associated with oncogenic pathways; there are monoclonal antibodies that target surface antigens often delivering toxic payloads or cells and finally there are antibodies and biologics that seek to overcome the immunosuppression caused by elements within the TME. How each of these therapies interact with the TME is currently under intense and widespread investigation. In this review we describe how the TME and its immunosuppressive components can influence both tumor progression and response to treatment focusing on three particular tumor types, classic Hodgkin Lymphoma (cHL), Pancreatic Ductal Adenocarcinoma (PDAC) and Glioblastoma Multiforme (GBM). And, finally, we offer five approaches to manipulate or manage the TME to improve outcomes for cancer patients.
Journal Article
Brain Targeted Gold Liposomes Improve RNAi Delivery for Glioblastoma
by
Santiago-Sánchez, Ginette S
,
Rios-Vicil, Christian I
,
Martínez-Zayas, Gabriel
in
Animals
,
Apolipoproteins
,
Apolipoproteins E - genetics
2020
Glioblastoma (GBM) is the most common and lethal of the central nervous system (CNS) malignancies. The initiation, progression, and infiltration ability of GBMs are attributed in part to the dysregulation of microRNAs (miRNAs). Thus, targeting dysregulated miRNAs with RNA oligonucleotides (RNA interference, RNAi) has been proposed for GBM treatment. Despite promising results in the laboratory, RNA oligonucleotides have clinical limitations that include poor RNA stability and off-target effects. RNAi therapies against GBM confront an additional obstacle, as they need to cross the blood-brain barrier (BBB).
Here, we developed gold-liposome nanoparticles conjugated with the brain targeting peptides apolipoprotein E (ApoE) and rabies virus glycoprotein (RVG). First, we functionalized gold nanoparticles with oligonucleotide miRNA inhibitors (OMIs), creating spherical nucleic acids (SNAs). Next, we encapsulated SNAs into ApoE, or RVG-conjugated liposomes, to obtain SNA-Liposome-ApoE and SNA-Liposome-RVG, respectively. We characterized each nanoparticle in terms of their size, charge, encapsulation efficiency, and delivery efficiency into U87 GBM cells in vitro. Then, they were administered intravenously (iv) in GBM syngeneic mice to evaluate their delivery efficiency to brain tumor tissue.
SNA-Liposomes of about 30-50 nm in diameter internalized U87 GBM cells and inhibited the expression of miRNA-92b, an aberrantly overexpressed miRNA in GBM cell lines and GBM tumors. Conjugating SNA-Liposomes with ApoE or RVG peptides increased their systemic delivery to the brain tumors of GBM syngeneic mice. SNA-Liposome-ApoE demonstrated to accumulate at higher extension in brain tumor tissues, when compared with non-treated controls, SNA-Liposomes, or SNA-Liposome-RVG.
SNA-Liposome-ApoE has the potential to advance the translation of miRNA-based therapies for GBM as well as other CNS disorders.
Journal Article
TGFBI secreted by tumor-associated macrophages promotes glioblastoma stem cell-driven tumor growth via integrin αvβ5-Src-Stat3 signaling
2022
In the glioblastoma (GBM) microenvironment, tumor-associated macrophages (TAMs) are prominent components and facilitate tumor growth. The exact molecular mechanisms underlying TAMs' function in promoting glioma stem cells (GSCs) maintenance and tumor growth remain largely unknown. We found a candidate molecule, transforming growth factor beta-induced (TGFBI), that was specifically expressed by TAMs and extremely low in GBM and GSC cells, and meanwhile closely related to glioma WHO grades and patient prognosis. The exact mechanism of TGFBI linking TAM functions to GSC-driven tumor growth was explored.
Western blot, quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), immunofluorescence (IF), immunohistochemistry staining (IHC) and public datasets were used to evaluate TGFBI origin and level in GBM. The response of GSCs to recombinant human TGFBI was assessed
and orthotopic xenografts were established to investigate the function and mechanism
.
M2-like TAMs infiltration was elevated in high-grade gliomas. TGFBI was preferentially secreted by M2-like TAMs and associated with a poor prognosis for patients with GBM. TGFBI promoted the maintenance of GSCs and GBM malignant growth through integrin αvβ5-Src-Stat3 signaling
and
. Of clinical relevance, TGFBI was enriched in the serum and CSF of GBM patients and significantly decreased after tumor resection.
TAM-derived TGFBI promotes GSC-driven tumor growth through integrin αvβ5-Src-Stat3 signaling. High serum or CSF TGFBI may serve as a potential diagnostic and prognostic bio-index for GBMs.
Journal Article
Clinical activity and safety of atezolizumab in patients with recurrent glioblastoma
2018
PurposeGlioblastoma is the most common primary malignant brain tumor. No standard treatment exists for recurrent disease. Glioblastoma is associated with an immunosuppressive tumor microenvironment. Immune checkpoint inhibitors, including atezolizumab (anti-programmed death-ligand 1), have demonstrated clinical activity in various cancers. Here, we present the safety and efficacy of atezolizumab in patients with glioblastoma from the phase 1a PCD4989g clinical trial (NCT01375842).MethodsEligible patients had confirmed recurrent glioblastoma and measurable disease per RANO criteria. Atezolizumab (1200 mg) was administered intravenously every 3 weeks until progression or unacceptable toxicity. Patients were monitored for safety; response was evaluated at least every 6 weeks. Baseline biomarkers were evaluated.ResultsAll 16 patients enrolled had received prior chemotherapy, and 50% prior bevacizumab. Ten patients (63%) experienced a treatment-related event. No treatment-related grade 4–5 events were reported. All deaths occurred due to progression or during follow-up. One patient experienced a partial response (5.3 months); 3 experienced disease stabilization. The median overall survival was 4.2 months (range 1.2 to 18.8+ months). Association between peripheral CD4+ T cells and efficacy was observed. Two patients with IDH1-mutant tumors and 1 with a POLE-mutant tumor experienced ≥ 16 months survival.ConclusionsAtezolizumab was safe and well tolerated in this group of patients with recurrent glioblastoma. Our preliminary findings suggest that biomarkers, including peripheral CD4+ T cells and hypermutated tumor status, may help guide selection of patients with recurrent glioblastoma who might receive most benefit from atezolizumab therapy, supporting further atezolizumab combination studies in glioblastoma.
Journal Article
m6A modification in RNA: biogenesis, functions and roles in gliomas
2020
The chemical modification of RNA is a newly discovered epigenetic regulation mechanism in cells and plays a crucial role in a variety of biological processes. N6-methyladenine (m6A) mRNA modification is the most abundant form of posttranscriptional RNA modification in eukaryotes. Through the development of m6A RNA sequencing, the relevant molecular mechanism of m6A modification has gradually been revealed. It has been found that the effect of m6A modification on RNA metabolism involves processing, nuclear export, translation and even decay. As the most common malignant tumour of the central nervous system, gliomas (especially glioblastoma) have a very poor prognosis, and treatment efficacy is not ideal even with the application of high-intensity treatment measures of surgery combined with chemoradiotherapy. Exploring the origin and development mechanisms of tumour cells from the perspective of tumour biogenesis has always been a hotspot in the field of glioma research. Emerging evidence suggests that m6A modification can play a key role in gliomas through a variety of mechanisms, providing more possibilities for early diagnosis and targeted therapy of gliomas. The aim of the present review is to focus on the research progress regarding the association between m6A modification and gliomas. And to provide a theoretical basis according to the currently available literature for further exploring this association. This review may provide new insights for the molecular mechanism, early diagnosis, histologic grading, targeted therapy and prognostic evaluation of gliomas.
Journal Article
Immune Escape in Glioblastoma Multiforme and the Adaptation of Immunotherapies for Treatment
by
McArthur, Simon
,
McArdle, Stephanie E. B.
,
Adhikaree, Jason
in
Antigens
,
Blood vessels
,
Blood-brain barrier
2020
Glioblastoma multiforme (GBM) is the most frequently occurring primary brain tumor and has a very poor prognosis, with only around 5% of patients surviving for a period of 5 years or more after diagnosis. Despite aggressive multimodal therapy, consisting mostly of a combination of surgery, radiotherapy, and temozolomide chemotherapy, tumors nearly always recur close to the site of resection. For the past 15 years, very little progress has been made with regards to improving patient survival. Although immunotherapy represents an attractive therapy modality due to the promising pre-clinical results observed, many of these potential immunotherapeutic approaches fail during clinical trials, and to date no immunotherapeutic treatments for GBM have been approved. As for many other difficult to treat cancers, GBM combines a lack of immunogenicity with few mutations and a highly immunosuppressive tumor microenvironment (TME). Unfortunately, both tumor and immune cells have been shown to contribute towards this immunosuppressive phenotype. In addition, current therapeutics also exacerbate this immunosuppression which might explain the failure of immunotherapy-based clinical trials in the GBM setting. Understanding how these mechanisms interact with one another, as well as how one can increase the anti-tumor immune response by addressing local immunosuppression will lead to better clinical results for immune-based therapeutics. Improving therapeutic delivery across the blood brain barrier also presents a challenge for immunotherapy and future therapies will need to consider this. This review highlights the immunosuppressive mechanisms employed by GBM cancers and examines potential immunotherapeutic treatments that can overcome these significant immunosuppressive hurdles.
Journal Article