Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,653
result(s) for
"Glioblastoma - mortality"
Sort by:
Management of Glioblastoma: State of the Art and Future Directions
by
Ashley, David M
,
Tan, Aaron C
,
Malinzak, Michael
in
Bevacizumab
,
Blood-brain barrier
,
Brain cancer
2020
Glioblastoma is the most common malignant primary brain tumor. Overall, the prognosis for patients with this disease is poor, with a median survival of <2 years. There is a slight predominance in males, and incidence increases with age. The standard approach to therapy in the newly diagnosed setting includes surgery followed by concurrent radiotherapy with temozolomide and further adjuvant temo-zolomide. Tumor-treating fields, delivering low-intensity alternating electric fields, can also be given concurrently with adjuvant temozolomide. At recurrence, there is no standard of care; however, surgery, radiotherapy, and systemic therapy with chemotherapy or bevacizumab are all potential options, depending on the patient's circumstances. Supportive and palliative care remain important considerations throughout the disease course in the multimodality approach to management. The recently revised classification of glioblastoma based on molecular profiling, notably isocitrate dehydrogenase (IDH) mutation status, is a result of enhanced understand-ing of the underlying pathogenesis of disease. There is a clear need for better thera-peutic options, and there have been substantial efforts exploring immunotherapy and precision oncology approaches. In contrast to other solid tumors, however, biological factors, such as the blood-brain barrier and the unique tumor and immune microen-vironment, represent significant challenges in the development of novel therapies. Innovative clinical trial designs with biomarker-enrichment strategies are needed to ultimately improve the outcome of patients with glioblastoma.
Journal Article
Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA–09): a randomised, open-label, phase 3 trial
by
Schnell, Oliver
,
Goldbrunner, Roland
,
Stummer, Walter
in
Adult
,
Aged
,
Antineoplastic Agents, Alkylating - therapeutic use
2019
There is an urgent need for more effective therapies for glioblastoma. Data from a previous unrandomised phase 2 trial suggested that lomustine-temozolomide plus radiotherapy might be superior to temozolomide chemoradiotherapy in newly diagnosed glioblastoma with methylation of the MGMT promoter. In the CeTeG/NOA-09 trial, we aimed to further investigate the effect of lomustine-temozolomide therapy in the setting of a randomised phase 3 trial.
In this open-label, randomised, phase 3 trial, we enrolled patients from 17 German university hospitals who were aged 18–70 years, with newly diagnosed glioblastoma with methylated MGMT promoter, and a Karnofsky Performance Score of 70% and higher. Patients were randomly assigned (1:1) with a predefined SAS-generated randomisation list to standard temozolomide chemoradiotherapy (75 mg/m2 per day concomitant to radiotherapy [59–60 Gy] followed by six courses of temozolomide 150–200 mg/m2 per day on the first 5 days of the 4-week course) or to up to six courses of lomustine (100 mg/m2 on day 1) plus temozolomide (100–200 mg/m2 per day on days 2–6 of the 6-week course) in addition to radiotherapy (59–60 Gy). Because of the different schedules, patients and physicians were not masked to treatment groups. The primary endpoint was overall survival in the modified intention-to-treat population, comprising all randomly assigned patients who started their allocated chemotherapy. The prespecified test for overall survival differences was a log-rank test stratified for centre and recursive partitioning analysis class. The trial is registered with ClinicalTrials.gov, number NCT01149109.
Between June 17, 2011, and April 8, 2014, 141 patients were randomly assigned to the treatment groups; 129 patients (63 in the temozolomide and 66 in the lomustine-temozolomide group) constituted the modified intention-to-treat population. Median overall survival was improved from 31·4 months (95% CI 27·7–47·1) with temozolomide to 48·1 months (32·6 months–not assessable) with lomustine-temozolomide (hazard ratio [HR] 0·60, 95% CI 0·35–1·03; p=0·0492 for log-rank analysis). A significant overall survival difference between groups was also found in a secondary analysis of the intention-to-treat population (n=141, HR 0·60, 95% CI 0·35–1·03; p=0·0432 for log-rank analysis). Adverse events of grade 3 or higher were observed in 32 (51%) of 63 patients in the temozolomide group and 39 (59%) of 66 patients in the lomustine-temozolomide group. There were no treatment-related deaths.
Our results suggest that lomustine-temozolomide chemotherapy might improve survival compared with temozolomide standard therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter. The findings should be interpreted with caution, owing to the small size of the trial.
German Federal Ministry of Education and Research.
Journal Article
Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial
2017
Rindopepimut (also known as CDX-110), a vaccine targeting the EGFR deletion mutation EGFRvIII, consists of an EGFRvIII-specific peptide conjugated to keyhole limpet haemocyanin. In the ACT IV study, we aimed to assess whether or not the addition of rindopepimut to standard chemotherapy is able to improve survival in patients with EGFRvIII-positive glioblastoma.
In this randomised, double-blind, phase 3 trial, we recruited patients aged 18 years and older with glioblastoma from 165 hospitals in 22 countries. Eligible patients had newly diagnosed glioblastoma confirmed to express EGFRvIII by central analysis, and had undergone maximal surgical resection and completion of standard chemoradiation without progression. Patients were stratified by European Organisation for Research and Treatment of Cancer recursive partitioning analysis class, MGMT promoter methylation, and geographical region, and randomly assigned (1:1) with a prespecified randomisation sequence (block size of four) to receive rindopepimut (500 μg admixed with 150 μg GM-CSF) or control (100 μg keyhole limpet haemocyanin) via monthly intradermal injection until progression or intolerance, concurrent with standard oral temozolomide (150–200 mg/m2 for 5 of 28 days) for 6–12 cycles or longer. Patients, investigators, and the trial funder were masked to treatment allocation. The primary endpoint was overall survival in patients with minimal residual disease (MRD; enhancing tumour <2 cm2 post-chemoradiation by central review), analysed by modified intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01480479.
Between April 12, 2012, and Dec 15, 2014, 745 patients were enrolled (405 with MRD, 338 with significant residual disease [SRD], and two unevaluable) and randomly assigned to rindopepimut and temozolomide (n=371) or control and temozolomide (n=374). The study was terminated for futility after a preplanned interim analysis. At final analysis, there was no significant difference in overall survival for patients with MRD: median overall survival was 20·1 months (95% CI 18·5–22·1) in the rindopepimut group versus 20·0 months (18·1–21·9) in the control group (HR 1·01, 95% CI 0·79–1·30; p=0·93). The most common grade 3–4 adverse events for all 369 treated patients in the rindopepimut group versus 372 treated patients in the control group were: thrombocytopenia (32 [9%] vs 23 [6%]), fatigue (six [2%] vs 19 [5%]), brain oedema (eight [2%] vs 11 [3%]), seizure (nine [2%] vs eight [2%]), and headache (six [2%] vs ten [3%]). Serious adverse events included seizure (18 [5%] vs 22 [6%]) and brain oedema (seven [2%] vs 12 [3%]). 16 deaths in the study were caused by adverse events (nine [4%] in the rindopepimut group and seven [3%] in the control group), of which one—a pulmonary embolism in a 64-year-old male patient after 11 months of treatment—was assessed as potentially related to rindopepimut.
Rindopepimut did not increase survival in patients with newly diagnosed glioblastoma. Combination approaches potentially including rindopepimut might be required to show efficacy of immunotherapy in glioblastoma.
Celldex Therapeutics, Inc.
Journal Article
Serum long noncoding RNA HOTAIR as a novel diagnostic and prognostic biomarker in glioblastoma multiforme
by
Tan, Sze Kiat
,
Wahlestedt, Claes
,
Ayad, Nagi G.
in
Analysis
,
Antisense RNA
,
Biological markers
2018
Glioblastoma multiforme (GBM) is the most common and aggressive malignant adult primary brain tumor. Despite surgical resection followed by radiotherapy and chemotherapy, the median survival rate is approximately 14 months. Although experimental therapies are in clinical trials for GBM, there is an urgent need for a peripheral GBM biomarker for measuring treatment response. As we have previously demonstrated that the long noncoding RNA HOX Transcript Antisense Intergenic RNA, or HOTAIR, is dysregulated in GBM and required for GBM cell proliferation, we hypothesized that HOTAIR expression may be utilized as a peripheral biomarker for GBM. HOTAIR expression was measured in serum from 43 GBM and 40 controls using quantitative real-time PCR (qRT-PCR). The PCR products were subsequently subcloned into pCR™4-TOPO®TA vectors for DNA sequencing. A ROC curve was also generated to examine HOTAIR’s prognostic value. The amount of HOTAIR in serum exosomes and exosome-depleted supernatant was calculated by qRT-PCR. The relative HOTAIR expression was also investigated in 15 pairs of GBM serum and tumors. We detected HOTAIR in serum from GBM patients. HOTAIR levels in serum samples from GBM patients was significantly higher than in the corresponding controls (
P
< 0.0001). The area under the ROC curve distinguishing GBM patients from controls was 0.913 (95% CI: 0.845–0.982,
P
< 0.0001), with 86.1% sensitivity and 87.5% specificity at the cut-off value of 10.8. HOTAIR expression was significantly correlated with high grade brain tumors. In addition,
Pearson
correlation analysis indicated a medium correlation of serum HOTAIR levels and the corresponding tumor HOTAIR levels (
r
= 0.734,
P
< 0.01). We confirmed via sequencing that the amplified HOTAIR from serum contained the HOTAIR sequence and maps to the known HOTAIR locus at 12q13. The serum-derived exosomes contain HOTAIR and the purified exosomes were validated by western blot and nanoparticle tracking analysis. Importantly, our results demonstrate that serum HOTAIR can be used as a novel prognostic and diagnostic biomarker for GBM.
Journal Article
Trends in glioblastoma: outcomes over time and type of intervention: a systematic evidence based analysis
by
Peterson, Jennifer
,
Suarez-Meade, Paola
,
Ortiz, Kyle
in
Bevacizumab
,
Brain cancer
,
Chemoradiotherapy
2020
IntroductionDespite aggressive treatment with chemoradiotherapy and maximum surgical resection, survival in patients with glioblastoma (GBM) remains poor. Ongoing efforts are aiming to prolong the lifespan of these patients; however, disparities exist in reported survival values with lack of clear evidence that objectively examines GBM survival trends. We aim to describe the current status and advances in the survival of patients with GBM, by analyzing median overall survival through time and between treatment modalities.MethodsA systematic review was conducted according to PRISMA guidelines to identify articles of newly diagnosed glioblastoma from 1978 to 2018. Full-text glioblastoma papers with human subjects, ≥ 18 years old, and n ≥ 25, were included for evaluation.ResultsThe central tendency of median overall survival (MOS) was 13.5 months (2.3–29.6) and cumulative 5-year survival was 5.8% (0.01%–29.1%), with a significant difference in survival between studies that predate versus postdate the implementation of temozolomide and radiation, [12.5 (2.3–28) vs 15.6 (3.8–29.6) months, P < 0.001]. In clinical trials, bevacizumab [18.2 (10.6–23.0) months], tumor treating fields (TTF) [20.7 (20.5–20.9) months], and vaccines [19.2 (15.3–26.0) months] reported the highest central measure of median survival.ConclusionCoadministration with radiotherapy and temozolomide provided a statistically significant increase in survival for patients suffering from glioblastoma. However, the natural history for GBM remains poor. Therapies including TTF pooled values of MOS and provide means of prolonging the survival of GBM patients.
Journal Article
Lomustine and Bevacizumab in Progressive Glioblastoma
2017
Bevacizumab is approved for the treatment of patients with progressive glioblastoma on the basis of uncontrolled data. Data from a phase 2 trial suggested that the addition of bevacizumab to lomustine might improve overall survival as compared with monotherapies. We sought to determine whether the combination would result in longer overall survival than lomustine alone among patients at first progression of glioblastoma.
We randomly assigned patients with progression after chemoradiation in a 2:1 ratio to receive lomustine plus bevacizumab (combination group, 288 patients) or lomustine alone (monotherapy group, 149 patients). The methylation status of the promoter of O
-methylguanine-DNA methyltransferase (MGMT) was assessed. Health-related quality of life and neurocognitive function were evaluated at baseline and every 12 weeks. The primary end point of the trial was overall survival.
A total of 437 patients underwent randomization. The median number of 6-week treatment cycles was three in the combination group and one in the monotherapy group. With 329 overall survival events (75.3%), the combination therapy did not provide a survival advantage; the median overall survival was 9.1 months (95% confidence interval [CI], 8.1 to 10.1) in the combination group and 8.6 months (95% CI, 7.6 to 10.4) in the monotherapy group (hazard ratio for death, 0.95; 95% CI, 0.74 to 1.21; P=0.65). Locally assessed progression-free survival was 2.7 months longer in the combination group than in the monotherapy group: 4.2 months versus 1.5 months (hazard ratio for disease progression or death, 0.49; 95% CI, 0.39 to 0.61; P<0.001). Grade 3 to 5 adverse events occurred in 63.6% of the patients in the combination group and 38.1% of the patients in the monotherapy group. The addition of bevacizumab to lomustine affected neither health-related quality of life nor neurocognitive function. The MGMT status was prognostic.
Despite somewhat prolonged progression-free survival, treatment with lomustine plus bevacizumab did not confer a survival advantage over treatment with lomustine alone in patients with progressive glioblastoma. (Funded by an unrestricted educational grant from F. Hoffmann-La Roche and by the EORTC Cancer Research Fund; EORTC 26101 ClinicalTrials.gov number, NCT01290939 ; Eudra-CT number, 2010-023218-30 .).
Journal Article
EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma
2014
This guideline provides recommendations for diagnostic and therapeutic procedures for patients with malignant gliomas. We differentiate evidence-based standards from reasonable options or non-evidence-based measures that should no longer be considered. The recommendations herein should provide a framework and assurance for the choice of diagnostic procedures and therapeutic measures and aim to reduce complications from unnecessary treatment and cost. The guideline contributes to a critical appreciation of concurrent drugs with a focus on the controlled use of anticonvulsants and steroids. It should serve as a guideline for all professionals involved in the diagnostics and care of glioma patients and also as a source of knowledge for insurance companies and other institutions involved in the cost regulation of cancer care in Europe. Implementation of the recommendations summarised here will need interdisciplinary structures of care for patients with brain tumours and structured processes of diagnostic and therapeutic procedures.
Journal Article
Short-Course Radiation plus Temozolomide in Elderly Patients with Glioblastoma
by
Chinot, Olivier
,
Cairncross, J. Gregory
,
Roa, Wilson
in
Aged
,
Aged, 80 and over
,
Brain cancer
2017
Older patients with glioblastoma appear to benefit more from treatment combining a shorter course (3 weeks rather than 6 weeks) of radiotherapy together with temozolomide than from radiotherapy alone.
Glioblastoma is a fatal illness that is associated with a median survival of less than 2 years. Population studies of glioblastoma have shown that survival declines with increasing age,
1
,
2
and the incidence of glioblastoma is increasing, especially among the elderly.
3
Older patients have been underrepresented in most randomized trials, in which the average age of participants is approximately 55 years, as compared with the population-based median for patients with glioblastoma of 65 years of age.
2
In 2005, a phase 3 trial of radiotherapy alone (60 Gy over a period of 6 weeks) versus radiotherapy plus temozolomide showed longer survival . . .
Journal Article
Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression
2020
Despite a deeper molecular understanding, human glioblastoma remains one of the most treatment refractory and fatal cancers. It is known that the presence of macrophages and microglia impact glioblastoma tumorigenesis and prevent durable response. Herein we identify the dual function cytokine IL-33 as an orchestrator of the glioblastoma microenvironment that contributes to tumorigenesis. We find that IL-33 expression in a large subset of human glioma specimens and murine models correlates with increased tumor-associated macrophages/monocytes/microglia. In addition, nuclear and secreted functions of IL-33 regulate chemokines that collectively recruit and activate circulating and resident innate immune cells creating a pro-tumorigenic environment. Conversely, loss of nuclear IL-33 cripples recruitment, dramatically suppresses glioma growth, and increases survival. Our data supports the paradigm that recruitment and activation of immune cells, when instructed appropriately, offer a therapeutic strategy that switches the focus from the cancer cell alone to one that includes the normal host environment.
Elevated levels of interleukin-33 have been associated with poor prognosis in patients with glioma. Here the authors show that glioma-derived IL-33 modulates a pro-tumorigenic immune microenvironment by activating resident and recruiting peripheral innate immune cells.
Journal Article
An Immune-Related Six-lncRNA Signature to Improve Prognosis Prediction of Glioblastoma Multiforme
2018
Recent studies have demonstrated the utility and superiority of long non-coding RNAs (lncRNAs) as novel biomarkers for cancer diagnosis, prognosis, and therapy. In the present study, the prognostic value of lncRNAs in glioblastoma multiforme was systematically investigated by performing a genome-wide analysis of lncRNA expression profiles in 419 glioblastoma patients from The Cancer Genome Atlas (TCGA) project. Using survival analysis and Cox regression model, we identified a set of six lncRNAs (AC005013.5, UBE2R2-AS1, ENTPD1-AS1, RP11-89C21.2, AC073115.6, and XLOC_004803) demonstrating an ability to stratify patients into high- and low-risk groups with significantly different survival (median 0.899 vs. 1.611 years, p = 3.87e−09, log-rank test) in the training cohort. The six-lncRNA signature was successfully validated on independent test cohort of 219 patients with glioblastoma, and it revealed superior performance for risk stratification with respect to existing lncRNA-related signatures. Multivariate Cox and stratification analysis indicated that the six-lncRNA signature was an independent prognostic factor after adjusting for other clinical covariates. Further in silico functional analysis suggested that the six-lncRNA signature may be involved in the immune-related biological processes and pathways which are very well known in the context of glioblastoma tumorigenesis. The identified lncRNA signature had important clinical implication for improving outcome prediction and guiding the tailored therapy for glioblastoma patients with further prospective validation.
Journal Article