Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,987 result(s) for "Global analysis, analysis on manifolds"
Sort by:
Degree Theory of Immersed Hypersurfaces
The authors develop a degree theory for compact immersed hypersurfaces of prescribed K-curvature immersed in a compact, orientable Riemannian manifold, where K is any elliptic curvature function. They apply this theory to count the (algebraic) number of immersed hyperspheres in various cases: where K is mean curvature, extrinsic curvature and special Lagrangian curvature and show that in all these cases, this number is equal to -\\chi(M), where \\chi(M) is the Euler characteristic of the ambient manifold M.
The Regularity of the Linear Drift in Negatively Curved Spaces
We show that the linear drift of the Brownian motion on the universal cover of a closed connected smooth Riemannian manifold is
Higher Orbifolds and Deligne-Mumford Stacks as Structured Infinity-Topoi
We develop a universal framework to study smooth higher orbifolds on the one hand and higher Deligne-Mumford stacks (as well as their derived and spectral variants) on the other, and use this framework to obtain a completely categorical description of which stacks arise as the functor of points of such objects. We choose to model higher orbifolds and Deligne-Mumford stacks as infinity-topoi equipped with a structure sheaf, thus naturally generalizing the work of Lurie (2004), but our approach applies not only to different settings of algebraic geometry such as classical algebraic geometry, derived algebraic geometry, and the algebraic geometry of commutative ring spectra as in Lurie (2004), but also to differential topology, complex geometry, the theory of supermanifolds, derived manifolds etc., where it produces a theory of higher generalized orbifolds appropriate for these settings. This universal framework yields new insights into the general theory of Deligne-Mumford stacks and orbifolds, including a representability criterion which gives a categorical characterization of such generalized Deligne-Mumford stacks. This specializes to a new categorical description of classical Deligne-Mumford stacks, a result sketched in Carchedi (2019), which extends to derived and spectral Deligne-Mumford stacks as well.
ANDERSON ACCELERATION FOR FIXED-POINT ITERATIONS
This paper concerns an acceleration method for fixed-point iterations that originated in work of D. G. Anderson [J. Assoc. Comput. Mach., 12 (1965), pp. 547–560], which we accordingly call Anderson acceleration here. This method has enjoyed considerable success and wide usage in electronic structure computations, where it is known as Anderson mixing; however, it seems to have been untried or underexploited in many other important applications. Moreover, while other acceleration methods have been extensively studied by the mathematics and numerical analysis communities, this method has received relatively little attention from these communities over the years. A recent paper by H. Fang and Y. Saad [Numer. Linear Algebra Appl., 16 (2009), pp. 197–221] has clarified a remarkable relationship of Anderson acceleration to quasi-Newton (secant updating) methods and extended it to define a broader Anderson family of acceleration methods. In this paper, our goals are to shed additional light on Anderson acceleration and to draw further attention to its usefulness as a general tool. We first show that, on linear problems, Anderson acceleration without truncation is \"essentially equivalent\" in a certain sense to the generalized minimal residual (GMRES) method. We also show that the Type 1 variant in the Fang—Saad Anderson family is similarly essentially equivalent to the Arnoldi (full orthogonalization) method. We then discuss practical considerations for implementing Anderson acceleration and illustrate its performance through numerical experiments involving a variety of applications.
The Effect of Expected Income on Individual Migration Decisions
This paper develops a tractable econometric model of optimal migration, focusing on expected income as the main economic influence on migration. The model improves on previous work in two respects: it covers optimal sequences of location decisions (rather than a single once-for-all choice) and it allows for many alternative location choices. The model is estimated using panel data from the National Longitudinal Survey of Youth on white males with a high-school education. Our main conclusion is that interstate migration decisions are influenced to a substantial extent by income prospects. The results suggest that the link between income and migration decisions is driven both by geographic differences in mean wages and by a tendency to move in search of a better locational match when the income realization in the current location is unfavorable.
Noise stability of functions with low influences: Invariance and optimality
In this paper we study functions with low influences on product probability spaces. These are functions f: Ω 1 ×...× Ω n → ℤ that have E[Var Ωi [f]] small compared to Var[f] for each i. The analysis of boolean functions f: {−1, 1} n → {−1, 1} with low influences has become a central problem in discrete Fourier analysis. It is motivated by fundamental questions arising from the construction of probabilistically checkable proofs in theoretical computer science and from problems in the theory of social choice in economics. We prove an invariance principle for multilinear polynomials with low influences and bounded degree; it shows that under mild conditions the distribution of such polynomials is essentially invariant for all product spaces. Ours is one of the very few known nonlinear invariance principles. It has the advantage that its proof is simple and that its error bounds are explicit. We also show that the assumption of bounded degree can be eliminated if the polynomials are slightly \"smoothed\"; this extension is essential for our applications to \"noise stability\"-type problems. In particular, as applications of the invariance principle we prove two conjectures: Khot, Kindler, Mossel, and O'Donnell's \"Majority Is Stablest\" conjecture from theoretical computer science, which was the original motivation for this work, and Kalai and Friedgut's \"It Ain't Over Till It's Over\" conjecture from social choice theory.
Product Differentiation, Multiproduct Firms, and Estimating the Impact of Trade Liberalization on Productivity
This paper studies whether removing barriers to trade induces efficiency gains for producers. Like almost all empirical work which relies on a production function to recover productivity measures, I do not observe physical output at the firm level. Therefore, it is imperative to control for unobserved prices and demand shocks. I develop an empirical model that combines a demand system with a production function to generate estimates of productivity. I rely on my framework to identify the productivity effects from reduced trade protection in the Belgian textile market. This trade liberalization provides me with observed demand shifters that are used to separate out the associated price, scale, and productivity effects. Using a matched plant-product level data set and detailed quota data, I find that correcting for unobserved prices leads to substantially lower productivity gains. More specifically, abolishing all quota protections increases firm-level productivity by only 2 percent as opposed to 8 percent when relying on standard measures of productivity. My results beg for a serious réévaluation of a long list of empirical studies that document productivity responses to major industry shocks and, in particular, to opening up to trade. My findings imply the need to study the impact of changes in the operating environment on productivity together with market power and prices in one integrated framework. The suggested method and identification strategy are quite general and can be applied whenever it is important to distinguish between revenue productivity and physical productivity.
Analysis of principal nested spheres
A general framework for a novel non-geodesic decomposition of high-dimensional spheres or high-dimensional shape spaces for planar landmarks is discussed. The decomposition, principal nested spheres, leads to a sequence of submanifolds with decreasing intrinsic dimensions, which can be interpreted as an analogue of principal component analysis. In a number of real datasets, an apparent one-dimensional mode of variation curving through more than one geodesic component is captured in the one-dimensional component of principal nested spheres. While analysis of principal nested spheres provides an intuitive and flexible decomposition of the high-dimensional sphere, an interesting special case of the analysis results in finding principal geodesies, similar to those from previous approaches to manifold principal component analysis. An adaptation of our method to Kendall's shape space is discussed, and a computational algorithm for fitting principal nested spheres is proposed. The result provides a coordinate system to visualize the data structure and an intuitive summary of principal modes of variation, as exemplified by several datasets.