Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
58
result(s) for
"Glomerular Filtration Barrier - pathology"
Sort by:
Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance
by
Tian, Xuefei
,
Ishibe, Shuta
,
Kim, Jin Ju
in
Actin Cytoskeleton - metabolism
,
Animals
,
Binding sites
2014
Podocytes are specialized actin-rich epithelial cells that line the kidney glomerular filtration barrier. The interface between the podocyte and the glomerular basement membrane requires integrins, and defects in either α3 or β1 integrin, or the α3β1 ligand laminin result in nephrotic syndrome in murine models. The large cytoskeletal protein talin1 is not only pivotal for integrin activation, but also directly links integrins to the actin cytoskeleton. Here, we found that mice lacking talin1 specifically in podocytes display severe proteinuria, foot process effacement, and kidney failure. Loss of talin1 in podocytes caused only a modest reduction in β1 integrin activation, podocyte cell adhesion, and cell spreading; however, the actin cytoskeleton of podocytes was profoundly altered by the loss of talin1. Evaluation of murine models of glomerular injury and patients with nephrotic syndrome revealed that calpain-induced talin1 cleavage in podocytes might promote pathogenesis of nephrotic syndrome. Furthermore, pharmacologic inhibition of calpain activity following glomerular injury substantially reduced talin1 cleavage, albuminuria, and foot process effacement. Collectively, these findings indicate that podocyte talin1 is critical for maintaining the integrity of the glomerular filtration barrier and provide insight into the pathogenesis of nephrotic syndrome.
Journal Article
Mechanisms of the proteinuria induced by Rho GTPases
by
Eisner, William
,
Fields, Timothy A.
,
Ruiz, Phillip
in
Actin Cytoskeleton - enzymology
,
Albuminuria - enzymology
,
Albuminuria - etiology
2012
Podocytes are highly differentiated cells that play an important role in maintaining glomerular filtration barrier integrity; a function regulated by small GTPase proteins of the Rho family. To investigate the role of Rho A in podocyte biology, we created transgenic mice expressing doxycycline-inducible constitutively active (V14 Rho) or dominant-negative Rho A (N19 Rho) in podocytes. Specific induction of either Rho A construct in podocytes caused albuminuria and foot process effacement along with disruption of the actin cytoskeleton as evidenced by decreased expression of the actin-associated protein synaptopodin. The mechanisms of these adverse effects, however, appeared to be different. Active V14 Rho enhanced actin polymerization, caused a reduction in nephrin mRNA and protein levels, promoted podocyte apoptosis, and decreased endogenous Rho A levels. In contrast, the dominant-negative N19 Rho caused a loss of podocyte stress fibers, did not alter the expression of either nephrin or Rho A, and did not cause podocyte apoptosis. Thus, our findings suggest that Rho A plays an important role in maintaining the integrity of the glomerular filtration barrier under basal conditions, but enhancement of Rho A activity above basal levels promotes podocyte injury.
Journal Article
Role of dynamin, synaptojanin, and endophilin in podocyte foot processes
by
Tian, Xuefei
,
Ishibe, Shuta
,
Ferguson, Shawn M.
in
Actin
,
Actins - metabolism
,
Adaptor Proteins, Signal Transducing - genetics
2012
Podocytes are specialized cells that play an integral role in the renal glomerular filtration barrier via their foot processes. The foot processes form a highly organized structure, the disruption of which causes nephrotic syndrome. Interestingly, several similarities have been observed between mechanisms that govern podocyte organization and mechanisms that mediate neuronal synapse development. Dynamin, synaptojanin, and endophilin are functional partners in synaptic vesicle recycling via interconnected actions in clathrin-mediated endocytosis and actin dynamics in neurons. A role of dynamin in the maintenance of the kidney filtration barrier via an action on the actin cytoskeleton of podocytes was suggested. Here we used a conditional double-KO of dynamin 1 (Dnm1) and Dnm2 in mouse podocytes to confirm dynamin's role in podocyte foot process maintenance. In addition, we demonstrated that while synaptojanin 1 (Synj1) KO mice and endophilin 1 (Sh3gl2), endophilin 2 (Sh3gl1), and endophilin 3 (Sh3gl3) triple-KO mice had grossly normal embryonic development, these mutants failed to establish a normal filtration barrier and exhibited severe proteinuria due to abnormal podocyte foot process formation. These results strongly implicate a protein network that functions at the interface between endocytosis and actin at neuronal synapses in the formation and maintenance of the kidney glomerular filtration barrier.
Journal Article
Euterpe oleracea Mart. seed extract protects against renal injury in diabetic and spontaneously hypertensive rats: role of inflammation and oxidative stress
by
Soares de Moura, Roberto
,
Viviane da Silva Cristino Cordeiro
,
Ana Paula Machado da Rocha
in
Anti-inflammatory agents
,
Antihypertensives
,
Antioxidants
2018
PurposeEuterpe oleracea Mart. (açaí) seed extract (ASE), through its anti-hypertensive, antioxidant and anti-inflammatory properties, may be useful to treat or prevent human diseases. Several evidences suggest that oxidative stress and inflammation contribute to the pathogenesis of diabetic nephropathy; therefore, we tested the hypothesis that ASE (200 mg/kg−1day−1) prevents diabetes and hypertension-related oxidative stress and inflammation, attenuating renal injury.MethodsMale rats with streptozotocin (STZ)-induced diabetes (D), and spontaneously hypertensive rats with STZ-induced diabetes (DH) were treated daily with tap water or ASE (D + ASE and DH + ASE, respectively) for 45 days. The control (C) and hypertensive (H) animals received water.ResultsThe elevated serum levels of urea and creatinine in D and DH, and increased albumin excretion in HD were reduced by ASE. Total glomeruli number in D and DH, were increased by ASE that also reduced renal fibrosis in both groups by decreasing collagen IV and TGF-β1 expression. ASE improved biomarkers of renal filtration barrier (podocin and nephrin) in D and DH groups and prevented the increased expression of caspase-3, IL-6, TNF-α and MCP-1 in both groups. ASE reduced oxidative damage markers (TBARS, carbonyl levels and 8-isoprostane) in D and DH associated with a decrease in Nox 4 and p47 subunit expression and increase in antioxidant enzyme activity in both groups (SOD, catalase and GPx).ConclusionASE substantially reduced renal injury and prevented renal dysfunction by reducing inflammation, oxidative stress and improving the renal filtration barrier, providing a nutritional resource for prevention of diabetic and hypertensive-related nephropathy.
Journal Article
Glomerular filtration barrier dysfunction in a self-limiting, RNA virus-induced glomerulopathy resembles findings in idiopathic nephrotic syndromes
by
Eckert, Christoph
,
Brenner, Thorsten
,
Reiser, Jochen
in
692/4022/1585/2759
,
692/4022/272/1684/1587/2101
,
692/699/255/2514
2020
Podocyte injury has recently been described as unifying feature in idiopathic nephrotic syndromes (INS). Puumala hantavirus (PUUV) infection represents a unique RNA virus-induced renal disease with significant proteinuria. The underlying pathomechanism is unclear. We hypothesized that PUUV infection results in podocyte injury, similar to findings in INS. We therefore analyzed standard markers of glomerular proteinuria (e.g. immunoglobulin G [IgG]), urinary nephrin excretion (podocyte injury) and serum levels of the soluble urokinase plasminogen activator receptor (suPAR), a proposed pathomechanically involved molecule in INS, in PUUV-infected patients. Hantavirus patients showed significantly increased urinary nephrin, IgG and serum suPAR concentrations compared to healthy controls. Nephrin and IgG levels were significantly higher in patients with severe proteinuria than with mild proteinuria, and nephrin correlated strongly with biomarkers of glomerular proteinuria over time. Congruently, electron microcopy analyses showed a focal podocyte foot process effacement. suPAR correlated significantly with urinary nephrin, IgG and albumin levels, suggesting suPAR as a pathophysiological mediator in podocyte dysfunction. In contrast to INS, proteinuria recovered autonomously in hantavirus patients. This study reveals podocyte injury as main cause of proteinuria in hantavirus patients. A better understanding of the regenerative nature of hantavirus-induced glomerulopathy may generate new therapeutic approaches for INS.
Journal Article
A New Pathogenesis of Albuminuria: Role of Transcytosis
by
Li, Zhen-Qiong
,
Wu, Liang
,
Zhang, Chun
in
Albuminuria
,
Albuminuria - metabolism
,
Albuminuria - pathology
2018
Transcytosis is an important intracellular transport process by which multicellular organisms selectively move cargoes from apical to basolateral membranes without disrupting cellular homeostasis. In kidney, macromolecular components in the serum, such as albumin, low-density lipoprotein and immunoglobulins, pass through the glomerular filtration barrier (GFB) and proximal tubular cells (PTCs) by transcytosis. Protein transcytosis plays a vital role in the pathology of albuminuria, which causes progressive destruction of the GFB structure and function. However, the pathophysiological consequences of protein transcytosis in the kidney remain largely unknown. This article summarizes recent researches on the regulation of albumin transcytosis across the GFB and PTCs in both physiological and pathological conditions. Understanding the mechanism of albumin transcytosis may reveal potential therapeutic targets for prevention or alleviation of the pathological consequences of albuminuria.
Journal Article
“Zebrafishing” for Novel Genes Relevant to the Glomerular Filtration Barrier
2013
Data for genes relevant to glomerular filtration barrier function or proteinuria is continually increasing in an era of microarrays, genome-wide association studies, and quantitative trait locus analysis. Researchers are limited by published literature searches to select the most relevant genes to investigate. High-throughput cell cultures and other in vitro systems ultimately need to demonstrate proof in an in vivo model. Generating mammalian models for the genes of interest is costly and time intensive, and yields only a small number of test subjects. These models also have many pitfalls such as possible embryonic mortality and failure to generate phenotypes or generate nonkidney specific phenotypes. Here we describe an in vivo zebrafish model as a simple vertebrate screening system to identify genes relevant to glomerular filtration barrier function. Using our technology, we are able to screen entirely novel genes in 4–6 weeks in hundreds of live test subjects at a fraction of the cost of a mammalian model. Our system produces consistent and reliable evidence for gene relevance in glomerular kidney disease; the results then provide merit for further analysis in mammalian models.
Journal Article
Role of protease‐activated receptor‐1 (PAR‐1) in the glomerular filtration barrier integrity
by
Rovin, Brad
,
Biederman, Laura
,
Ivanov, Iouri
in
Animals
,
anticoagulant related nephropathy
,
Anticoagulants
2022
Protease‐activated receptors (PAR) play an important role in the regulation of cellular function by the coagulation system, and they are activated by thrombin. PAR‐1 is expressed in both endothelial cells and podocytes in the kidney. The role of PAR1 in the maintenance of the glomerular filtration barrier is not clear. Anticoagulant‐related nephropathy (ARN) is a kidney disease with glomerular hematuria and red blood cell tubular casts. We validated 5/6 nephrectomy (5/6NE) in rats as a model of ARN and had demonstrated that direct thrombin inhibitor (dabigatran) induces ARN. The aim of this study was to investigate the role of PAR‐1 in the ARN pathogenesis. 5/6NE rats were treated with dabigatran (150 mg/kg/day), PAR‐1 inhibitor SCH79797 (1 and 3 mg/kg/day) and PAR‐1 agonist TFLLR‐NH2 (0.25 and 0.50 µmol/kg/day) for 7 days. Serum creatinine and hematuria were assessed daily. Kidney morphology was evaluated at the end of the study. In 5/6NE rats treated with either dabigatran or combination with a PAR‐1 modulator, there was an elevation in serum creatinine, glomerular hematuria, red blood casts in the tubules, and acute tubular epithelial cell injury. Interestingly, both PAR‐1 modulators in a dose‐depended manner had similar effects on the serum creatinine levels and hematuria as those of dabigatran. Dabigatran‐induced increase in the systolic blood pressure was not affected by PAR‐1 modulators. In conclusion, the normal function of PAR‐1 is crucial to maintain the glomerular filtration barrier integrity. Either activation or blockage of PAR‐1 leads to glomerular hematuria and subsequent acute tubular epithelial cell injury. Red blood cell tubular casts in animals treated with PAR‐1 modulators with and without direct thrombin inhibitor dabigatran.
Journal Article
Molecular understanding of the slit diaphragm
by
Huber, Tobias B.
,
Grahammer, Florian
,
Schell, Christoph
in
Animals
,
Congenital diseases
,
Diaphragms, Vaginal
2013
Glomerular filtration has always attracted the interest of nephrologists and renal researchers alike. Although several key questions on the structure and function of the kidney filter may have been answered within the last 40 years of intense research, there still remain crucial questions to be solved. The following article attempts to give a brief overview of recent developments in glomerular research highlighting particular advances in our understanding of the slit diaphragm.
Journal Article
The Adaptor Protein Grb2 Is Not Essential for the Establishment of the Glomerular Filtration Barrier
2012
The kidney filtration barrier is formed by the combination of endothelial cells, basement membrane and epithelial cells called podocytes. These specialized actin-rich cells form long and dynamic protrusions, the foot processes, which surround glomerular capillaries and are connected by specialized intercellular junctions, the slit diaphragms. Failure to maintain the filtration barrier leads to massive proteinuria and nephrosis. A number of proteins reside in the slit diaphragm, notably the transmembrane proteins Nephrin and Neph1, which are both able to act as tyrosine phosphorylated scaffolds that recruit cytoplasmic effectors to initiate downstream signaling. While association between tyrosine-phosphorylated Neph1 and the SH2/SH3 adaptor Grb2 was shown in vitro to be sufficient to induce actin polymerization, in vivo evidence supporting this finding is still lacking. To test this hypothesis, we generated two independent mouse lines bearing a podocyte-specific constitutive inactivation of the Grb2 locus. Surprisingly, we show that mice lacking Grb2 in podocytes display normal renal ultra-structure and function, thus demonstrating that Grb2 is not required for the establishment of the glomerular filtration barrier in vivo. Moreover, our data indicate that Grb2 is not required to restore podocyte function following kidney injury. Therefore, although in vitro experiments suggested that Grb2 is important for the regulation of actin dynamics, our data clearly shows that its function is not essential in podocytes in vivo, thus suggesting that Grb2 rather plays a secondary role in this process.
Journal Article