Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6,624
result(s) for
"Glucose - deficiency"
Sort by:
Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke
by
Borlongan, Cesar V
,
Kaneko, Yuji
,
Yasuhara, Takao
in
Adenosine Triphosphate - metabolism
,
Animal Models
,
Animals
2009
Background
Minocycline, a second-generation tetracycline with anti-inflammatory and anti-apoptotic properties, has been shown to promote therapeutic benefits in experimental stroke. However, equally compelling evidence demonstrates that the drug exerts variable and even detrimental effects in many neurological disease models. Assessment of the mechanism underlying minocycline neuroprotection should clarify the drug's clinical value in acute stroke setting.
Results
Here, we demonstrate that minocycline attenuates both
in vitro
(oxygen glucose deprivation) and
in vivo
(middle cerebral artery occlusion) experimentally induced ischemic deficits by direct inhibition of apoptotic-like neuronal cell death involving the anti-apoptotic Bcl-2/cytochrome c pathway. Such anti-apoptotic effect of minocycline is seen in neurons, but not apparent in astrocytes. Our data further indicate that the neuroprotection is dose-dependent, in that only low dose minocycline inhibits neuronal cell death cascades at the acute stroke phase, whereas the high dose exacerbates the ischemic injury.
Conclusion
The present study advises our community to proceed with caution to use the minimally invasive intravenous delivery of low dose minocycline in order to afford neuroprotection that is safe for stroke.
Journal Article
Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer
2020
SLC7A11-mediated cystine uptake is critical for maintaining redox balance and cell survival. Here we show that this comes at a significant cost for cancer cells with high levels of SLC7A11. Actively importing cystine is potentially toxic due to its low solubility, forcing cancer cells with high levels of SLC7A11 (SLC7A11high) to constitutively reduce cystine to the more soluble cysteine. This presents a significant drain on the cellular NADPH pool and renders such cells dependent on the pentose phosphate pathway. Limiting glucose supply to SLC7A11high cancer cells results in marked accumulation of intracellular cystine, redox system collapse and rapid cell death, which can be rescued by treatments that prevent disulfide accumulation. We further show that inhibitors of glucose transporters selectively kill SLC7A11high cancer cells and suppress SLC7A11high tumour growth. Our results identify a coupling between SLC7A11-associated cystine metabolism and the pentose phosphate pathway, and uncover an accompanying metabolic vulnerability for therapeutic targeting in SLC7A11high cancers.Liu et al. show that cancer cells with high levels of SLC7A11 have increased dependency on the pentose phosphate pathway and consequently accumulate disulfide, and can be therapeutically targeted by limiting glucose supply.
Journal Article
The Role of SGLT1 and GLUT2 in Intestinal Glucose Transport and Sensing
2014
Intestinal glucose absorption is mediated by SGLT1 whereas GLUT2 is considered to provide basolateral exit. Recently, it was proposed that GLUT2 can be recruited into the apical membrane after a high luminal glucose bolus allowing bulk absorption of glucose by facilitated diffusion. Moreover, SGLT1 and GLUT2 are suggested to play an important role in intestinal glucose sensing and incretin secretion. In mice that lack either SGLT1 or GLUT2 we re-assessed the role of these transporters in intestinal glucose uptake after radiotracer glucose gavage and performed Western blot analysis for transporter abundance in apical membrane fractions in a comparative approach. Moreover, we examined the contribution of these transporters to glucose-induced changes in plasma GIP, GLP-1 and insulin levels. In mice lacking SGLT1, tissue retention of tracer glucose was drastically reduced throughout the entire small intestine whereas GLUT2-deficient animals exhibited higher tracer contents in tissue samples than wild type animals. Deletion of SGLT1 resulted also in reduced blood glucose elevations and abolished GIP and GLP-1 secretion in response to glucose. In mice lacking GLUT2, glucose-induced insulin but not incretin secretion was impaired. Western blot analysis revealed unchanged protein levels of SGLT1 after glucose gavage. GLUT2 detected in apical membrane fractions mainly resulted from contamination with basolateral membranes but did not change in density after glucose administration. SGLT1 is unequivocally the prime intestinal glucose transporter even at high luminal glucose concentrations. Moreover, SGLT1 mediates glucose-induced incretin secretion. Our studies do not provide evidence for GLUT2 playing any role in either apical glucose influx or incretin secretion.
Journal Article
Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK
2017
Glucose starvation activates AMPK via an AMP/ADP-independent mechanism that involves fructose-1,6-bisphosphate and aldolase.
New insights into AMPK activation
AMPK is a central regulator of metabolic homeostasis, and its dysfunction may result in various diseases including diabetes, obesity, and cancer. AMPK is known to be activated under stressful conditions, including glucose starvation. It has been assumed that upon glucose deprivation AMPK activation occurs in the canonical AMP/ADP-dependent manner, with reduced metabolism of glucose causing falling ATP and increasing AMP and ADP. Here, Sheng-Cai Lin and colleagues show that this is not the case, and that glucose starvation activates AMPK via a different route, in an AMP/ADP-independent manner. During glycolysis, glucose is converted to fructose-1,6-bisphosphate (FBP), which is then processed by FBP aldolases. The authors show that the absence of glucose results in a reduction of FBP-bound aldolase, which triggers LKB1 phosphorylation and activation of AMPK. This study thus uncovers FBP as the critical metabolite that signals glucose availability and FBP aldolases as the sensors that relay the information to AMPK.
The major energy source for most cells is glucose, from which ATP is generated via glycolysis and/or oxidative metabolism. Glucose deprivation activates AMP-activated protein kinase (AMPK)
1
, but it is unclear whether this activation occurs solely via changes in AMP or ADP, the classical activators of AMPK
2
,
3
,
4
,
5
. Here, we describe an AMP/ADP-independent mechanism that triggers AMPK activation by sensing the absence of fructose-1,6-bisphosphate (FBP), with AMPK being progressively activated as extracellular glucose and intracellular FBP decrease. When unoccupied by FBP, aldolases promote the formation of a lysosomal complex containing at least v-ATPase, ragulator, axin, liver kinase B1 (LKB1) and AMPK, which has previously been shown to be required for AMPK activation
6
,
7
. Knockdown of aldolases activates AMPK even in cells with abundant glucose, whereas the catalysis-defective D34S aldolase mutant, which still binds FBP, blocks AMPK activation. Cell-free reconstitution assays show that addition of FBP disrupts the association of axin and LKB1 with v-ATPase and ragulator. Importantly, in some cell types AMP/ATP and ADP/ATP ratios remain unchanged during acute glucose starvation, and intact AMP-binding sites on AMPK are not required for AMPK activation. These results establish that aldolase, as well as being a glycolytic enzyme, is a sensor of glucose availability that regulates AMPK.
Journal Article
CRISPR–Cas9 screens reveal regulators of ageing in neural stem cells
2024
Ageing impairs the ability of neural stem cells (NSCs) to transition from quiescence to proliferation in the adult mammalian brain. Functional decline of NSCs results in the decreased production of new neurons and defective regeneration following injury during ageing
1
–
4
. Several genetic interventions have been found to ameliorate old brain function
5
–
8
, but systematic functional testing of genes in old NSCs—and more generally in old cells—has not been done. Here we develop in vitro and in vivo high-throughput CRISPR–Cas9 screening platforms to systematically uncover gene knockouts that boost NSC activation in old mice. Our genome-wide screens in primary cultures of young and old NSCs uncovered more than 300 gene knockouts that specifically restore the activation of old NSCs. The top gene knockouts are involved in cilium organization and glucose import. We also establish a scalable CRISPR–Cas9 screening platform in vivo, which identified 24 gene knockouts that boost NSC activation and the production of new neurons in old brains. Notably, the knockout of
Slc2a4
, which encodes the GLUT4 glucose transporter, is a top intervention that improves the function of old NSCs. Glucose uptake increases in NSCs during ageing, and transient glucose starvation restores the ability of old NSCs to activate. Thus, an increase in glucose uptake may contribute to the decline in NSC activation with age. Our work provides scalable platforms to systematically identify genetic interventions that boost the function of old NSCs, including in vivo, with important implications for countering regenerative decline during ageing.
CRISPR–Cas9 screens in cultures of young and old neural stem cells (NSCs) and in vivo in old mice identify gene knockouts that can boost old NSC activation and neurogenesis, with
Slc2a4
, which encodes the glucose transporter GLUT4, showing particular efficacy.
Journal Article
Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides
by
Sabatini, David M.
,
Lorbeer, Franziska K.
,
Wang, Tim
in
13/106
,
631/67/2327
,
Adenosine Triphosphate - metabolism
2014
New apparatus is used to maintain proliferating cancer cells in low-glucose conditions, demonstrating that mitochondrial oxidative phosphorylation (OXPHOS) is essential for optimal proliferation in these conditions; the most sensitive cell lines are defective in OXPHOS upregulation and may therefore be sensitive to current antidiabetic drugs that inhibit OXPHOS.
Biguanides active against starved tumour cells
Using a new continuous-flow culture apparatus called Nutrostat, designed to ensure constant and controlled extracellular nutrient levels, David Sabatini and colleagues screened cancer cell lines for genes important when cells experience low glucose levels. They found that the ability of cells to increase mitochondrial oxidative phosphorylation under conditions of low glucose was crucial. Cancer cells unable to do so due to impaired glucose utilization or mitochondrial DNA mutations were particularly sensitive to a class of compounds, biguanides, which are in use to treat diabetes. These findings may lead to new therapeutic applications of these drugs to treat tumours displaying such defects.
As the concentrations of highly consumed nutrients, particularly glucose, are generally lower in tumours than in normal tissues
1
,
2
, cancer cells must adapt their metabolism to the tumour microenvironment. A better understanding of these adaptations might reveal cancer cell liabilities that can be exploited for therapeutic benefit. Here we developed a continuous-flow culture apparatus (Nutrostat) for maintaining proliferating cells in low-nutrient media for long periods of time, and used it to undertake competitive proliferation assays on a pooled collection of barcoded cancer cell lines cultured in low-glucose conditions. Sensitivity to low glucose varies amongst cell lines, and an RNA interference (RNAi) screen pinpointed mitochondrial oxidative phosphorylation (OXPHOS) as the major pathway required for optimal proliferation in low glucose. We found that cell lines most sensitive to low glucose are defective in the OXPHOS upregulation that is normally caused by glucose limitation as a result of either mitochondrial DNA (mtDNA) mutations in complex I genes or impaired glucose utilization. These defects predict sensitivity to biguanides, antidiabetic drugs that inhibit OXPHOS
3
,
4
, when cancer cells are grown in low glucose or as tumour xenografts. Notably, the biguanide sensitivity of cancer cells with mtDNA mutations was reversed by ectopic expression of yeast NDI1, a ubiquinone oxidoreductase that allows bypass of complex I function
5
. Thus, we conclude that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.
Journal Article
Microglial metabolic flexibility supports immune surveillance of the brain parenchyma
by
Weilinger, Nicholas L.
,
Bernier, Louis-Philippe
,
Choi, Hyun B.
in
13/106
,
14/69
,
631/378/2596/1953
2020
Microglia are highly motile cells that continuously monitor the brain environment and respond to damage-associated cues. While glucose is the main energy substrate used by neurons in the brain, the nutrients metabolized by microglia to support surveillance of the parenchyma remain unexplored. Here, we use fluorescence lifetime imaging of intracellular NAD(P)H and time-lapse two-photon imaging of microglial dynamics in vivo and in situ, to show unique aspects of the microglial metabolic signature in the brain. Microglia are metabolically flexible and can rapidly adapt to consume glutamine as an alternative metabolic fuel in the absence of glucose. During insulin-induced hypoglycemia in vivo or in aglycemia in acute brain slices, glutaminolysis supports the maintenance of microglial process motility and damage-sensing functions. This metabolic shift sustains mitochondrial metabolism and requires mTOR-dependent signaling. This remarkable plasticity allows microglia to maintain their critical surveillance and phagocytic roles, even after brain neuroenergetic homeostasis is compromised.
Glucose is the main source of fuel in the brain. Here, the authors show that in the absence of glucose, glutamine is required for microglia to maintain their immune surveillance function.
Journal Article
KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1
by
Wolfson, Rachel L.
,
Orozco, Jose M.
,
Condon, Kendall J.
in
631/80/83/2359
,
631/80/86/2369
,
Amino acids
2017
A protein complex composed of KPTN, ITFG2, C12orf66 and SZT2, named KICSTOR, is necessary for lysosomal localization of GATOR1, interaction of GATOR1 with the Rag GTPases and GATOR2, and nutrient-dependent mTORC1 modulation.
KICSTOR is a negative regulator of mTORC1 signalling
The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth and organismal homeostasis and is deregulated in many human diseases, including epilepsy and cancer. In response to nutrients, mTORC1 is recruited to the lysosome by the Rag family of GTPases, whose activity is regulated by the GATOR complex. Here David Sabatini and colleagues identify a four-membered protein complex that they term KICSTOR. It localizes to lysosomes and interacts with GATOR to negatively regulate the pathway through which mTORC1 senses nutrients. In mice lacking one of the KICSTOR subunits, SZT2, mTORC1 signalling is hyperactivated in several tissues. A related paper in this week's issue of
Nature
from Ming Li and colleagues identifies the protein SZT2 as a negative regulator of mTORC1 signalling. Together, the two papers offer insight into mTORC1 regulation at the lysosome and could have implications for diseases associated with hyperactive mTORC1 signalling.
The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth that responds to diverse environmental signals and is deregulated in many human diseases, including cancer and epilepsy
1
,
2
,
3
. Amino acids are a key input to this system, and act through the Rag GTPases to promote the translocation of mTORC1 to the lysosomal surface, its site of activation
4
. Multiple protein complexes regulate the Rag GTPases in response to amino acids, including GATOR1, a GTPase activating protein for RAGA, and GATOR2, a positive regulator of unknown molecular function. Here we identify a protein complex (KICSTOR) that is composed of four proteins, KPTN, ITFG2, C12orf66 and SZT2, and that is required for amino acid or glucose deprivation to inhibit mTORC1 in cultured human cells. In mice that lack SZT2, mTORC1 signalling is increased in several tissues, including in neurons in the brain. KICSTOR localizes to lysosomes; binds and recruits GATOR1, but not GATOR2, to the lysosomal surface; and is necessary for the interaction of GATOR1 with its substrates, the Rag GTPases, and with GATOR2. Notably, several KICSTOR components are mutated in neurological diseases associated with mutations that lead to hyperactive mTORC1 signalling
5
,
6
,
7
,
8
,
9
,
10
. Thus, KICSTOR is a lysosome-associated negative regulator of mTORC1 signalling, which, like GATOR1, is mutated in human disease
11
,
12
.
Journal Article
Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake
2013
Brain tumor initiating cells (BTICs) are self-renewing, tumorigenic cells that often reside in a necrotic and hypoxic niche in the brain. Here the authors show that BTICs can become more tumorigenic upon glucose restriction and compensate for this cellular stress by upregulating their capacity to take up glucose.
Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) owing to preferential BTIC survival and to adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3, and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, tumor initiating cells may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may maintain the tumor hierarchy and portend poor prognosis.
Journal Article
Uridine-derived ribose fuels glucose-restricted pancreatic cancer
2023
Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy
1
,
2
. This is mediated in part by a complex tumour microenvironment
3
, low vascularity
4
, and metabolic aberrations
5
,
6
. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA,
UPP1
is regulated by KRAS–MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high
UPP1
compared with non-tumoural tissues, and
UPP1
expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy.
A metabolite screen of pancreatic cells shows that pancreatic cancer cells metabolize uridine-derived ribose via UPP1, supporting redox balance, survival and proliferation.
Journal Article