Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
134 result(s) for "Glucose Transporter Type 5 - metabolism"
Sort by:
Effect of the flavonoid hesperidin on glucose and fructose transport, sucrase activity and glycaemic response to orange juice in a crossover trial on healthy volunteers
Although polyphenols inhibit glucose absorption and transport in vitro, it is uncertain whether this activity is sufficient to attenuate glycaemic response in vivo. We examined this using orange juice, which contains high levels of hesperidin. We first used a combination of in vitro assays to evaluate the potential effect of hesperidin and other orange juice components on intestinal sugar absorption and then tested whether this translated to an effect in healthy volunteers. Hesperidin attenuated transfer of 14C-labelled glucose across differentiated Caco-2/TC7 cell monolayers. The involvement of the sugar transporter GLUT2 was demonstrated by experiments carried out in the absence of Na to exclude the contribution of sodium-glucose linked transporter 1 and further explored by the use of Xenopus laevis oocytes expressing human GLUT2 or GLUT5. Fructose transport was also affected by hesperidin partly by inhibition of GLUT5, while hesperidin, even at high concentration, did not inhibit rat intestinal sucrase activity. We conducted three separate crossover interventions, each on ten healthy volunteers using orange juice with different amounts of added hesperidin and water. The biggest difference in postprandial blood glucose between orange juice and control, containing equivalent amounts of glucose, fructose, sucrose, citric acid and ascorbate, was when the juice was diluted (ΔC max=–0·5 mm, P=0·0146). The effect was less pronounced when the juice was given at regular strength. Our data indicate that hesperidin can modulate postprandial glycaemic response of orange juice by partial inhibition of intestinal GLUT, but this depends on sugar and hesperidin concentrations.
GLUT3 inhibitor discovery through in silico ligand screening and in vivo validation in eukaryotic expression systems
The passive transport of glucose and related hexoses in human cells is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT3 is a high-affinity glucose transporter primarily responsible for glucose entry in neurons. Changes in its expression have been implicated in neurodegenerative diseases and cancer. GLUT3 inhibitors can provide new ways to probe the pathophysiological role of GLUT3 and tackle GLUT3-dependent cancers. Through in silico screening of an ~ 8 million compounds library against the inward- and outward-facing models of GLUT3, we selected ~ 200 ligand candidates. These were tested for in vivo inhibition of GLUT3 expressed in hexose transporter-deficient yeast cells, resulting in six new GLUT3 inhibitors. Examining their specificity for GLUT1-5 revealed that the most potent GLUT3 inhibitor (G3iA, IC 50  ~ 7 µM) was most selective for GLUT3, inhibiting less strongly only GLUT2 (IC 50  ~ 29 µM). None of the GLUT3 inhibitors affected GLUT5, three inhibited GLUT1 with equal or twofold lower potency, and four showed comparable or two- to fivefold better inhibition of GLUT4. G3iD was a pan-Class 1 GLUT inhibitor with the highest preference for GLUT4 (IC 50  ~ 3.9 µM). Given the prevalence of GLUT1 and GLUT3 overexpression in many cancers and multiple myeloma’s reliance on GLUT4, these GLUT3 inhibitors may discriminately hinder glucose entry into various cancer cells, promising novel therapeutic avenues in oncology.
Structure and mechanism of the mammalian fructose transporter GLUT5
The altered activity of the fructose transporter GLUT5, an isoform of the facilitated-diffusion glucose transporter family, has been linked to disorders such as type 2 diabetes and obesity. GLUT5 is also overexpressed in certain tumour cells, and inhibitors are potential drugs for these conditions. Here we describe the crystal structures of GLUT5 from Rattus norvegicus and Bos taurus in open outward- and open inward-facing conformations, respectively. GLUT5 has a major facilitator superfamily fold like other homologous monosaccharide transporters. On the basis of a comparison of the inward-facing structures of GLUT5 and human GLUT1, a ubiquitous glucose transporter, we show that a single point mutation is enough to switch the substrate-binding preference of GLUT5 from fructose to glucose. A comparison of the substrate-free structures of GLUT5 with occluded substrate-bound structures of Escherichia coli XylE suggests that, in addition to global rocker-switch-like re-orientation of the bundles, local asymmetric rearrangements of carboxy-terminal transmembrane bundle helices TM7 and TM10 underlie a ‘gated-pore’ transport mechanism in such monosaccharide transporters. This study has determined the X-ray crystal structures of GLUT5 from Rattus norvegicus in an open, outward-facing conformation and GLUT5 from Bos taurus in an open, inward-facing conformation; comparison of these structures with previously published structures of the related Escherichia coli d -xylose:H + symporter XylE suggests that transport in GLUT5 is controlled by both a global ‘rocker-switch’-type motion and a local ‘gated-pore’-type transport mechanism. Structure of fructose transporter GLUT5 SLC2 family glucose transporters (GLUTs) facilitate the transport of glucose and other monosaccharides across biological membranes. GLUT5, which is fructose-specific, has been linked to disorders such as type 2 diabetes and obesity and is overexpressed in certain tumour cells. The authors solve X-ray crystal structures of GLUT5 from the brown rat in an open, outward-facing conformation and GLUT5 from cattle in an open, inward-facing conformation. Comparison of these structures with previously published structures of the related XylE, a proton-coupled sugar transporter from Escherichia coli , suggest that transport in GLUT5 is controlled by both 'rocker-switch' and 'gated-pore' type transport mechanisms. Also in this issue of Nature , Dong Deng et al . solve the X-ray crystal structures of human GLUT3 in outward-open and outward-occluded conformations.
Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat
The African naked mole-rats’ (Heterocephalus glaber) social and subterranean lifestyle generates a hypoxic niche. Under experimental conditions naked mole-rats tolerate hours of extreme hypoxia and survive 18 minutes of total oxygen deprivation (anoxia) without apparent injury. During anoxia the naked mole-rat switches to anaerobic metabolism fueled by fructose which is actively accumulated and metabolized to lactate in the brain. Global expression of the GLUT5 fructose transporter and high levels of ketohexokinase (KHK) were identified as molecular signatures of fructose metabolism. Fructose-driven glycolytic respiration in naked mole-rat tissues avoids feedback inhibition of glycolysis via phosphofructokinase, supporting viability. The metabolic rewiring of glycolysis can circumvent the normally lethal effects of oxygen-deprivation a mechanism that could be harnessed to minimize hypoxic damage in human disease.
Intestinal fructose and glucose metabolism in health and disease
The worldwide epidemics of obesity and diabetes have been linked to increased sugar consumption in humans. Here, we review fructose and glucose metabolism, as well as potential molecular mechanisms by which excessive sugar consumption is associated to metabolic diseases and insulin resistance in humans. To this end, we focus on understanding molecular and cellular mechanisms of fructose and glucose transport and sensing in the intestine, the intracellular signaling effects of dietary sugar metabolism, and its impact on glucose homeostasis in health and disease. Finally, the peripheral and central effects of dietary sugars on the gut–brain axis will be reviewed.
Exploring fructose metabolism as a potential therapeutic approach for pancreatic cancer
Excessive fructose intake has been associated with the development and progression of pancreatic cancer. This study aimed to elucidate the relationship between fructose utilization and pancreatic cancer progression. Our findings revealed that pancreatic cancer cells have a high capacity to utilize fructose and are capable of converting glucose to fructose via the AKR1B1 -mediated polyol pathway, in addition to uptake via the fructose transporter GLUT5. Fructose metabolism exacerbates pancreatic cancer proliferation by enhancing glycolysis and accelerating the production of key metabolites that regulate angiogenesis. However, pharmacological blockade of fructose metabolism has been shown to slow pancreatic cancer progression and synergistically enhance anti-tumor capabilities when combined with anti-angiogenic agents. Overall, targeting fructose metabolism may prove to be a promising therapeutic approach in the treatment of pancreatic cancer.
Intestinal absorption of D-fructose isomers, D-allulose, D-sorbose and D-tagatose, via glucose transporter type 5 (GLUT5) but not sodium-dependent glucose cotransporter 1 (SGLT1) in rats
D-allulose, D-sorbose and D-tagatose are D-fructose isomers that are called rare sugars. These rare sugars have been studied intensively in terms of biological production and food application as well as physiological effects. There are limited papers with regard to the transporters mediating the intestinal absorption of these rare sugars. We examined whether these rare sugars are absorbed via sodium-dependent glucose cotransporter 1 (SGLT1) as well as via GLUT type 5 (GLUT5) using rats. High-fructose diet fed rats, which express more intestinal GLUT5, exhibited significantly higher peripheral concentrations, Cmax and AUC0–180 min when D-allulose, D-sorbose and D-tagatose were orally administrated. KGA-2727, a selective SGLT1 inhibitor, did not affect the peripheral and portal vein concentrations and pharmacokinetic parameters of these rare sugars. The results suggest that D-allulose, D-sorbose and D-tagatose are likely transported via GLUT5 but not SGLT1 in rat small intestine.
Discovery of a specific inhibitor of human GLUT5 by virtual screening and in vitro transport evaluation
GLUT5, a fructose-transporting member of the facilitative glucose transporter (GLUT, SLC2) family, is a therapeutic target for diabetes and cancer but has no potent inhibitors. We virtually screened a library of 6 million chemicals onto a GLUT5 model and identified N-[4-(methylsulfonyl)-2-nitrophenyl]-1,3-benzodioxol-5-amine (MSNBA) as an inhibitor of GLUT5 fructose transport in proteoliposomes. MSNBA inhibition was specific to GLUT5; this inhibitor did not affect the fructose transport of human GLUT2 or the glucose transport of human GLUT1-4 or bacterial GlcP Se . In MCF7 cells, a human breast cancer cell line, MSNBA competitively inhibited GLUT5 fructose uptake with a K I of 3.2 ± 0.4 μM. Ligand docking, mutagenesis and functional studies indicate that MSNBA binds near the active site and inhibitor discrimination involves H387 of GLUT5. Thus, MSNBA is a selective and potent inhibitor of fructose transport via GLUT5, and the first chemical probe for this transporter. Our data indicate that active site differences in GLUT members could be exploited to further enhance ligand specificity.
GLUT5-overexpression-related tumorigenic implications
Glucose transporter 5 (GLUT5) overexpression has gained increasing attention due to its profound implications for tumorigenesis. This manuscript provides a comprehensive overview of the key findings and implications associated with GLUT5 overexpression in cancer. GLUT5 has been found to be upregulated in various cancer types, leading to alterations in fructose metabolism and enhanced glycolysis, even in the presence of oxygen, a hallmark of cancer cells. This metabolic shift provides cancer cells with an alternative energy source and contributes to their uncontrolled growth and survival. Beyond its metabolic roles, recent research has unveiled additional aspects of GLUT5 in cancer biology. GLUT5 overexpression appears to play a critical role in immune evasion mechanisms, which further worsens tumor progression and complicates therapeutic interventions. This dual role of GLUT5 in both metabolic reprogramming and immune modulation highlights its significance as a potential diagnostic marker and therapeutic target. Understanding the molecular mechanisms driving GLUT5 overexpression is crucial for developing targeted therapeutic strategies that can disrupt the unique vulnerabilities of GLUT5-overexpressing cancer cells. This review emphasizes the complexities surrounding GLUT5’s involvement in cancer and underscores the pressing need for continued research to unlock its potential as a diagnostic biomarker and therapeutic target, ultimately improving cancer management and patient outcomes.
Inhibition of human GLUT1 and GLUT5 by plant carbohydrate products; insights into transport specificity
Glucose transporters GLUT1 (transports glucose) and GLUT5 (transports fructose), in addition to their functions in normal metabolism, have been implicated in several diseases including cancer and diabetes. While GLUT1 has several inhibitors, none have been described for GLUT5. By transport activity assays we found two plant products, rubusoside (from Rubus suavissimus) and astragalin-6-glucoside (a glycosylated derivative of astragalin, from Phytolacca americana ) that inhibited human GLUT5. These plants are utilized in traditional medicine: R. suavissimus for weight loss and P. americana for cancer treatment, but the molecular interactions of these products are unknown. Rubusoside also inhibited human GLUT1, but astragalin-6-glucoside did not. In silico analysis of rubusoside:protein interactions pinpointed a major difference in substrate cavity between these transporters, a residue that is a tryptophan in GLUT1 but an alanine in GLUT5. Investigation of mutant proteins supported the importance of this position in ligand specificity. GLUT1 W388A became susceptible to inhibition by astragalin-6-glucoside and resistant to rubusoside. GLUT5 A396W transported fructose and also glucose and maintained inhibition by rubusoside and astragalin-6-glucoside. Astragalin-6-glucoside can serve as a starting point in the design of specific inhibitors for GLUT5. The application of these studies to understanding glucose transporters and their interaction with substrates and ligands is discussed.