Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,864
result(s) for
"Glutathione Disulfide"
Sort by:
NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis
by
Schwarzländer, Markus
,
Meyer, Andreas J
,
Hell, Rüdiger
in
Arabidopsis
,
Arabidopsis - enzymology
,
Arabidopsis - genetics
2009
Tight control of cellular redox homeostasis is essential for protection against oxidative damage and for maintenance of normal metabolism as well as redox signaling events. Under oxidative stress conditions, the tripeptide glutathione can switch from its reduced form (GSH) to oxidized glutathione disulfide (GSSG), and thus, forms an important cellular redox buffer. GSSG is normally reduced to GSH by 2 glutathione reductase (GR) isoforms encoded in the Arabidopsis genome, cytosolic GR1 and GR2 dual-targeted to chloroplasts and mitochondria. Measurements of total GR activity in leaf extracts of wild-type and 2 gr1 deletion mutants revealed that [almost equal to]65% of the total GR activity is attributed to GR1, whereas [almost equal to]35% is contributed by GR2. Despite the lack of a large share in total GR activity, gr1 mutants do not show any informative phenotype, even under stress conditions, and thus, the physiological impact of GR1 remains obscure. To elucidate its role in plants, glutathione-specific redox-sensitive GFP was used to dynamically measure the glutathione redox potential (EGSH) in the cytosol. Using this tool, it is shown that EGSH in gr1 mutants is significantly shifted toward more oxidizing conditions. Surprisingly, dynamic reduction of GSSG formed during induced oxidative stress in gr1 mutants is still possible, although significantly delayed compared with wild-type plants. We infer that there is functional redundancy in this critical pathway. Integrated biochemical and genetic assays identify the NADPH-dependent thioredoxin system as a backup system for GR1. Deletion of both, NADPH-dependent thioredoxin reductase A and GR1, prevents survival due to a pollen lethal phenotype.
Journal Article
Analysis of GSH and GSSG after derivatization with N-ethylmaleimide
by
Dalle-Donne, Isabella
,
Rossi, Ranieri
,
Giustarini, Daniela
in
631/1647/2196/1380
,
631/1647/2196/2197
,
631/1647/527/1820
2013
This protocol describes a procedure for determining glutathione (GSH) and glutathione disulfide (GSSG) concentrations in blood and other tissues. Artifactual oxidation to GSSG of 5–15% of the GSH found in a sample can occur during deproteination of biological samples with any of the commonly used acids, with consequent marked overestimation of GSSG. This can be prevented by derivatizing GSH with the alkylating agent
N
-ethylmaleimide (NEM) to form GS-NEM before acid deproteination, followed by back-extraction of excess NEM from the deproteinized samples with dichloromethane. GSSG concentration is then measured by spectrophotometry with the GSH recycling method, on the basis of conversion of GSSG to GSH by glutathione reductase and NADPH and reaction with 5,5′-dithiobis-(2-nitrobenzoic acid). GSH concentration is instead measured by either of two methods: by analysis of GS-NEM conjugates by HPLC in the same sample that is used to measure GSSG or, alternatively, by analysis of GSH by spectrophotometry (GSH recycling method) on one additional sample aliquot that has not been derivatized with NEM. The procedure can assay GSH and GSSG in blood and other tissues in 30 min or less.
Journal Article
Elucidation of Plasma-induced Chemical Modifications on Glutathione and Glutathione Disulphide
by
Verlackt, Christof
,
Havenith, Martina
,
Klinkhammer, Christina
in
119/118
,
140/133
,
631/114/2397
2017
Cold atmospheric pressure plasmas are gaining increased interest in the medical sector and clinical trials to treat skin diseases are underway. Plasmas are capable of producing several reactive oxygen and nitrogen species (RONS). However, there are open questions how plasma-generated RONS interact on a molecular level in a biological environment, e.g. cells or cell components. The redox pair glutathione (GSH) and glutathione disulphide (GSSG) forms the most important redox buffer in organisms responsible for detoxification of intracellular reactive species. We apply Raman spectroscopy, mass spectrometry, and molecular dynamics simulations to identify the time-dependent chemical modifications on GSH and GSSG that are caused by dielectric barrier discharge under ambient conditions. We find GSSG, S-oxidised glutathione species, and S-nitrosoglutathione as oxidation products with the latter two being the final products, while glutathione sulphenic acid, glutathione sulphinic acid, and GSSG are rather reaction intermediates. Experiments using stabilized pH conditions revealed the same main oxidation products as were found in unbuffered solution, indicating that the dominant oxidative or nitrosative reactions are not influenced by acidic pH. For more complex systems these results indicate that too long treatment times can cause difficult-to-handle modifications to the cellular redox buffer which can impair proper cellular function.
Journal Article
mechanisms of alloxan- and streptozotocin-induced diabetes
2008
Alloxan and streptozotocin are toxic glucose analogues that preferentially accumulate in pancreatic beta cells via the GLUT2 glucose transporter. In the presence of intracellular thiols, especially glutathione, alloxan generates reactive oxygen species (ROS) in a cyclic redox reaction with its reduction product, dialuric acid. Autoxidation of dialuric acid generates superoxide radicals, hydrogen peroxide and, in a final iron-catalysed reaction step, hydroxyl radicals. These hydroxyl radicals are ultimately responsible for the death of the beta cells, which have a particularly low antioxidative defence capacity, and the ensuing state of insulin-dependent 'alloxan diabetes'. As a thiol reagent, alloxan also selectively inhibits glucose-induced insulin secretion through its ability to inhibit the beta cell glucose sensor glucokinase. Following its uptake into the beta cells, streptozotocin is split into its glucose and methylnitrosourea moiety. Owing to its alkylating properties, the latter modifies biological macromolecules, fragments DNA and destroys the beta cells, causing a state of insulin-dependent diabetes. The targeting of mitochondrial DNA, thereby impairing the signalling function of beta cell mitochondrial metabolism, also explains how streptozotocin is able to inhibit glucose-induced insulin secretion.
Journal Article
The Prognostic Role of Glutathione and Its Related Antioxidant Enzymes in the Recurrence of Hepatocellular Carcinoma
by
Hsiao, Yung-Fang
,
Huang, Yi-Chia
,
Cheng, Shao-Bin
in
Aged
,
Anticoagulants
,
antioxidant activity
2021
The imbalance of high oxidative stress and low antioxidant capacities is thought to be a significant cause of the development and progression of hepatocellular carcinoma (HCC). However, the impact of oxidative stress, glutathione (GSH), and its related antioxidant enzymes on the recurrence of HCC has not been investigated. The purpose of this study was to compare the changes to oxidative stress and GSH-related antioxidant capacities before and after tumor resection in patients with HCC recurrence and non-recurrence. We also evaluated the prognostic significance of GSH and its related enzymes in HCC recurrence. This was a cross-sectional and follow-up study. Ninety-two HCC patients who were going to receive tumor resection were recruited. We followed patients’ recurrence and survival status until the end of the study, and then assigned patients into the recurrent or the non-recurrent group. The tumor recurrence rate was 52.2% during the median follow-up period of 3.0 years. Patients had significantly lower plasma malondialdehyde level, but significantly or slightly higher levels of GSH, glutathione disulfide, trolox equivalent antioxidant capacity, glutathione peroxidase (GPx), and glutathione reductase (GR) activities after tumor resection compared to the respective levels before tumor resection in both recurrent and non-recurrent groups. GSH level in HCC tissue was significantly higher than that in adjacent normal tissue in both recurrent and non-recurrent patients. Decreased plasma GPx (HR = 0.995, p = 0.01) and GR (HR = 0.98, p = 0.04) activities before tumor resection, and the increased change of GPx (post—pre-resection) (HR = 1.004, p = 0.03) activity were significantly associated with the recurrence of HCC. These findings suggest there might be a possible application of GPx or GR as therapeutic targets for reducing HCC recurrence.
Journal Article
Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production
by
Schaffer, Stephen
,
Jong, Chian Ju
,
Azuma, Junichi
in
Aconitate Hydratase - antagonists & inhibitors
,
Aconitate Hydratase - metabolism
,
Alanine
2012
An important function of the β-amino acid, taurine, is the regulation of oxidative stress. However, taurine is neither a classical scavenger nor a regulator of the antioxidative defenses, leaving uncertain the mechanism underlying the antioxidant activity of taurine. In the present study, the taurine antagonist and taurine transport inhibitor, β-alanine, was used to examine the mechanism underlying the antioxidant activity of taurine. Exposure of isolated cardiomyocytes to medium containing β-alanine for a period of 48 h led to a 45% decrease in taurine content and an increase in mitochondrial oxidative stress, as evidenced by enhanced superoxide generation, the inactivation of the oxidant sensitive enzyme, aconitase, and the oxidation of glutathione. Associated with the increase in oxidative stress was a decline in electron transport activity, with the activities of respiratory chain complexes I and III declining 50–65% and oxygen consumption falling 30%. A reduction in respiratory chain activity coupled with an increase in oxidative stress is commonly caused by the development of a bottleneck in electron transport that leads to the diversion of electrons from the respiratory chain to the acceptor oxygen forming in the process superoxide. Because β-alanine exposure significantly reduces the levels of respiratory chain complex subunits, ND5 and ND6, the bottleneck in electron transport appears to be caused by impaired synthesis of key subunits of the electron transport chain complexes. Co-administration of taurine with β-alanine largely prevents the mitochondrial effects of β-alanine, but treatment of the cells with 5 mM taurine in the absence of β-alanine has no effect on the mitochondria, likely because taurine treatment has little effect on cellular taurine levels. Thus, taurine serves as a regulator of mitochondrial protein synthesis, thereby enhancing electron transport chain activity and protecting the mitochondria against excessive superoxide generation.
Journal Article
Extracellular Calcium Receptor as a Target for Glutathione and Its Derivatives
2022
Extracellular glutathione (GSH) and oxidized glutathione (GSSG) can modulate the function of the extracellular calcium sensing receptor (CaSR). The CaSR has a binding pocket in the extracellular domain of CaSR large enough to bind either GSH or GSSG, as well as the naturally occurring oxidized derivative L-cysteine glutathione disulfide (CySSG) and the compound cysteinyl glutathione (CysGSH). Modeling the binding energies (ΔG) of CySSG and CysGSH to CaSR reveals that both cysteine derivatives may have greater affinities for CaSR than either GSH or GSSG. GSH, CySSG, and GSSG are found in circulation in mammals and, among the three, CySSG is more affected by HIV/AIDs and aging than either GSH or GSSG. The beta-carbon linkage of cysteine in CysGSH may model a new class of calcimimetics, exemplified by etelcalcetide. Circulating glutathionergic compounds, particularly CySSG, may mediate calcium-regulatory responses via receptor-binding to CaSR in a variety of organs, including parathyroids, kidneys, and bones. Receptor-mediated actions of glutathionergics may thus complement their roles in redox regulation and detoxification. The glutathionergic binding site(s) on CaSR are suggested to be a target for development of drugs that can be used in treating kidney and other diseases whose mechanisms involve CaSR dysregulation.
Journal Article
Skeletal muscle and erythrocyte redox status is associated with dietary cysteine intake and physical fitness in healthy young physically active men
by
Jamurtas, Athanasios Z
,
Draganidis, Dimitrios
,
Poulios, Athanasios
in
Biomarkers
,
Body composition
,
Correlation analysis
2023
PurposeTo investigate the association between redox status in erythrocytes and skeletal muscle with dietary nutrient intake and markers of physical fitness and habitual physical activity (PA).MethodsForty-five young physically active men were assessed for body composition, dietary nutrient intake, muscle strength, cardiorespiratory capacity and habitual PA. Blood and muscle samples were collected to estimate selected redox biomarkers. Partial correlation analysis was used to evaluate the independent relationship of each factor with redox biomarkers.ResultsDietary cysteine intake was positively correlated (p < 0.001) with both erythrocyte (r = 0.697) and muscle GSH (0.654, p < 0.001), erythrocyte reduced/oxidized glutathione ratio (GSH/GSSG) (r = 0.530, p = 0.001) and glutathione reductase (GR) activity (r = 0.352, p = 0.030) and inversely correlated with erythrocyte protein carbonyls (PC) levels (r = − 0.325; p = 0.046). Knee extensors eccentric peak torque was positively correlated with GR activity (r = 0.355; p = 0.031) while, one-repetition maximum in back squat exercise was positively correlated with erythrocyte GSH/GSSG ratio (r = 0.401; p = 0.014) and inversely correlated with erythrocyte GSSG and PC (r = − 0.441, p = 0.006; r = − 0.413, p = 0.011 respectively). Glutathione peroxidase (GPx) activity was positively correlated with step count (r = 0.520; p < 0.001), light (r = 0.406; p = 0.008), moderate (r = 0.417; p = 0.006), moderate-to-vigorous (r = 0.475; p = 0.001), vigorous (r = 0.352; p = 0.022) and very vigorous (r = 0.326; p = 0.035) PA. Muscle GSSG inversely correlated with light PA (r = − 0.353; p = 0.022).ConclusionThese results indicate that dietary cysteine intake may be a critical element for the regulation of glutathione metabolism and redox status in two different tissues pinpointing the independent significance of cysteine for optimal redox regulation. Musculoskeletal fitness and PA levels may be predictors of skeletal muscle, but not erythrocyte, antioxidant capacity.Trial registrationRegistry: ClinicalTrials.gov, identifier: NCT03711838, date of registration: October 19, 2018.
Journal Article
Oxidative Damage Induced by Arsenic in Mice or Rats: A Systematic Review and Meta-Analysis
2017
In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (
P
< 0.05) greater extent upon exposure to As
3+
than to As
5+
. Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.
Journal Article
An unusual thioredoxin system in the facultative parasite Acanthamoeba castellanii
2021
The free-living amoeba Acanthamoeba castellanii occurs worldwide in soil and water and feeds on bacteria and other microorganisms. It is, however, also a facultative parasite and can cause serious infections in humans. The annotated genome of A. castellanii (strain Neff) suggests the presence of two different thioredoxin reductases (TrxR), of which one is of the small bacterial type and the other of the large vertebrate type. This combination is highly unusual. Similar to vertebrate TrxRases, the gene coding for the large TrxR in A. castellanii contains a UGA stop codon at the C-terminal active site, suggesting the presence of selenocysteine. We characterized the thioredoxin system in A. castellanii in conjunction with glutathione reductase (GR), to obtain a more complete understanding of the redox system in A. castellanii and the roles of its components in the response to oxidative stress. Both TrxRases localize to the cytoplasm, whereas GR localizes to the cytoplasm and the large organelle fraction. We could only identify one thioredoxin (Trx-1) to be indeed reduced by one of the TrxRases, i.e., by the small TrxR. This thioredoxin, in turn, could reduce one of the two peroxiredoxins tested and also methionine sulfoxide reductase A (MsrA). Upon exposure to hydrogen peroxide and diamide, only the small TrxR was upregulated in expression at the mRNA and protein levels, but not the large TrxR. Our results show that the small TrxR is involved in the A. castellanii’s response to oxidative stress. The role of the large TrxR, however, remains elusive.
Journal Article