Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,891
result(s) for
"Glutathione Peroxidase - genetics"
Sort by:
The Role of rs713041 Glutathione Peroxidase 4 (GPX4) Single Nucleotide Polymorphism on Disease Susceptibility in Humans: A Systematic Review and Meta-Analysis
by
Hesketh, John
,
Barbosa, Priscila
,
Abo El-Magd, Nada F.
in
Alzheimer's disease
,
Apoptosis
,
Cancer
2022
Aim: The single-nucleotide polymorphism (SNP) rs713041, located in the regulatory region, is required to incorporate selenium into the selenoprotein glutathione peroxidase 4 (GPX4) and has been found to have functional consequences. This systematic review aimed to conduct a meta-analysis to determine whether there is an association between GPX4 (rs713041) SNP and the risk of diseases in humans and its correlation with selenium status. Material and methods: A systematic search for English-language manuscripts published between January 1990 and November 2022 was carried out using six databases: CINAHL, Cochrane, Medline, PubMed, Scopus and Web of Science. Odds ratios (ORs) and 95% confidence intervals (CIs) were applied to assess a relationship between GPX4 (rs713041) SNP and the risk of different diseases based on three genetic models. Review Manager 5.4 and Comprehensive Meta-Analysis 4 software were used to perform the meta-analysis and carry out Egger’s test for publication bias. Results: Data from 21 articles were included in the systematic review. Diseases were clustered according to the physiological system affected to understand better the role of GPX4 (rs713041) SNP in developing different diseases. Carriers of the GPX4 (rs173041) T allele were associated with an increased risk of developing colorectal cancer in additive and dominant models (p = 0.02 and p = 0.004, respectively). In addition, carriers of the T allele were associated with an increased risk of developing stroke and hypertension in the additive, dominant and recessive models (p = 0.002, p = 0.004 and p = 0.01, respectively). On the other hand, the GPX4 (rs713041) T allele was associated with a decreased risk of developing pre-eclampsia in the additive, dominant and recessive models (p < 0.0001, p = 0.002 and p = 0.0005, respectively). Moreover, selenium levels presented lower mean values in cancer patients relative to control groups (SMD = −0.39 µg/L; 95% CI: −0.64, −0.14; p = 0.002, I2 = 85%). Conclusion: GPX4 (rs713041) T allele may influence colorectal cancer risk, stroke, hypertension and pre-eclampsia. In addition, low selenium levels may play a role in the increased risk of cancer.
Journal Article
Emerging role of glutathione peroxidase 4 in myeloid cell lineage development and acute myeloid leukemia
by
Auberger, Patrick
,
Robert, Guillaume
,
Favreau, Cécile
in
Acute myeloid leukemia
,
Amino acids
,
Animals
2024
Phospholipid Hydroperoxide Gluthatione Peroxidase also called Glutathione Peroxidase 4 is one of the 25 described human selenoproteins. It plays an essential role in eliminating toxic lipid hydroxy peroxides, thus inhibiting ferroptosis and favoring cell survival. GPX4 is differentially expressed according to myeloid differentiation stage, exhibiting lower expression in hematopoietic stem cells and polymorphonuclear leucocytes, while harboring higher level of expression in common myeloid progenitors and monocytes. In addition, GPX4 is highly expressed in most of acute myeloid leukemia (AML) subtypes compared to normal hematopoietic stem cells. High GPX4 expression is consistently correlated to poor prognosis in patients suffering AML. However, the role of GPX4 in the development of the myeloid lineage and in the initiation and progression of myeloid leukemia remains poorly explored. Given its essential role in the detoxification of lipid hydroperoxides, and its overexpression in most of myeloid malignancies, GPX4 inhibition has emerged as a promising therapeutic strategy to specifically trigger ferroptosis and eradicate myeloid leukemia cells. In this review, we describe the most recent advances concerning the role of GPX4 and, more generally ferroptosis in the myeloid lineage and in the emergence of AML. We also discuss the therapeutic interest and limitations of GPX4 inhibition alone or in combination with other drugs as innovative therapies to treat AML patients.
Journal Article
Prooxidation and Cytotoxicity of Selenium Nanoparticles at Nonlethal Level in Sprague-Dawley Rats and Buffalo Rat Liver Cells
2020
The effects of selenium nanoparticles (SeNPs) on the antioxidant capacity in Sprague-Dawley (SD) rats were investigated. The rats were given intragastric administration of an SeNP suspension at doses of 0, 2, 4, and 8 mg Se/kg BW for two weeks. The antioxidant capacity in serum and organic tissues (liver, heart, and kidney) and the gene expression levels of glutathione peroxidase 1 (GPX1) and glutathione peroxidase 4 (GPX4) in the liver were measured. Buffalo rat liver (BRL) cell lines were further constructed to explore the cytotoxicity mechanism induced by SeNPs through the determination of antioxidant capacity; cell activity; apoptosis; and Caspase-3, Caspase-8, and Caspase-9 family activities. The results showed that SeNP administration over 4.0 mg Se/kg BW decreased the antioxidant capacities in the serum, liver, and heart and downregulated mRNA expression of GPX1 and GPX4 in the liver. The BRL cell line experiments showed that treatment with over 24 μM SeNPs decreased the viability of the cells and damaged the antioxidant capacity. Flow cytometry analysis showed that decreased cell viability induced by SeNPs is mainly due to apoptosis, rather than cell necrosis. Caspase-3 and Caspase-8 activities were also increased when BRL cells were treated with 24 μM and 48 μM SeNPs. Taken together, a nonlethal level of SeNPs could impair the antioxidant capacity in serum and organic tissues of rats, and the liver is the most sensitive to the toxicity of SeNPs. A pharmacological dose of SeNPs could lead to cytotoxicity and induce cell death through apoptosis and extrinsic pathways contributing to SeNP-induced apoptosis in BRL cells.
Journal Article
Baru Almonds Increase the Activity of Glutathione Peroxidase in Overweight and Obese Women: A Randomized, Placebo-Controlled Trial
by
Cunha, Luiz Carlos da
,
de Souza, Rávila Graziany Machado
,
Silva, Marina Alves Coelho
in
adiponectin
,
Adult
,
almonds
2019
Background: Obesity-induced inflammation is frequently associated with higher oxidative stress. In vitro and experimental studies have considered baru almonds (Dipteryx alata Vog) as a legume seed with high antioxidant capacity. The aim of this study was to evaluate whether baru almonds are capable of improving the inflammatory and antioxidant status in overweight and obese women. Methods: In a parallel-arm, randomized placebo-controlled trial, 46 overweight and obese women (age: 40 ± 11 years; body mass index: 33.3 ± 4.3) were randomly assigned to receive advice to follow a normocaloric and isoenergetic diet with placebo (PLA, n = 22) or similar advice plus 20 g baru almonds (BARU, n = 24) for 8 wk. Malondialdehyde (MDA), adiponectin, tumor necrosis factor-α, interleukin-6, interleukin-10, antioxidant enzymes activities (catalase—CAT; glutathione peroxidase—GPx; superoxide dismutase—SOD), and minerals were analyzed in plasma samples. Results: At baseline, groups were similar regarding the body composition, oxidative, and inflammatory parameters. The BARU group increased the activity of GPx (+0.08 U/mg, 95%CI + 0.05 to +0.12 vs. −0.07, 95%CI −0.12 to −0.03, p < 0.01) and plasma copper concentration (p = 0.037) when compared to the PLA group. No differences were observed between groups in CAT and SOD activity or MDA and cytokines concentrations. Conclusions: Baru almond supplementation increased the GPx activity in overweight and obese women.
Journal Article
Differential responses to selenomethionine supplementation by sex and genotype in healthy adults
2012
A year-long intervention trial was conducted to characterise the responses of multiple biomarkers of Se status in healthy American adults to supplemental selenomethionine (SeMet) and to identify factors affecting those responses. A total of 261 men and women were randomised to four doses of Se (0, 50, 100 or 200 μg/d as l-SeMet) for 12 months. Responses of several biomarkers of Se status (plasma Se, serum selenoprotein P (SEPP1), plasma glutathione peroxidase activity (GPX3), buccal cell Se, urinary Se) were determined relative to genotype of four selenoproteins (GPX1, GPX3, SEPP1, selenoprotein 15), dietary Se intake and parameters of single-carbon metabolism. Results showed that supplemental SeMet did not affect GPX3 activity or SEPP1 concentration, but produced significant, dose-dependent increases in the Se contents of plasma, urine and buccal cells, each of which plateaued by 9–12 months and was linearly related to effective Se dose (μg/d per kg0·75). The increase in urinary Se excretion was greater for women than men, and for individuals of the GPX1 679 T/T genotype than for those of the GPX1 679 C/C genotype. It is concluded that the most responsive Se-biomarkers in this non-deficient cohort were those related to body Se pools: plasma, buccal cell and urinary Se concentrations. Changes in plasma Se resulted from increases in its non-specific component and were affected by both sex and GPX1 genotype. In a cohort of relatively high Se status, the Se intake (as SeMet) required to support plasma Se concentration at a target level (Sepl-target) is: Se_{in} = [(Se_{pl - target} - Se_{pl})/(18.2\\hairsp ng\\,d\\,kg^{0.75}/ml\\,per\\,\\mu g)] .
Journal Article
Associations between glutathione peroxidase-1 Pro198Leu polymorphism, selenium status, and DNA damage levels in obese women after consumption of Brazil nuts
by
Cozzolino, Silvia Maria Franciscato
,
de Bortoli, Maritsa Carla
,
Cominetti, Cristiane
in
Adolescent
,
Adult
,
Antioxidants
2011
Alterations in selenium (Se) status may result in suboptimal amounts of selenoproteins, which have been associated with increased oxidative stress levels. The Pro198Leu polymorphism at the glutathione peroxidase-1 (GPx1) gene is supposed to be functional. The response of Se status, GPx activity, and levels of DNA damage to a Se supplementation trial between the genotypes related to that polymorphism was investigated.
A randomized trial was conducted with 37 morbidly obese women. Participants consumed one Brazil nut, which provided approximately 290 μg of Se a day, for 8 wk. Blood Se concentrations, erythrocyte GPx activity, and DNA damage levels were measured at baseline and at 8 wk. The results were compared by genotypes.
The genotype frequencies were 0.487, 0.378, and 0.135 for Pro/Pro (the wild-type genotype), Pro/Leu, and Leu/Leu, respectively. At baseline, 100% of the subjects were Se deficient, and after the supplementation, there was an improvement in plasma Se (
P < 0.001 for Pro/Pro and Pro/Leu,
P < 0.05 for Leu/Leu), erythrocyte Se (
P = 0.00 for Pro/Pro and Pro/Leu,
P < 0.05 for Leu/Leu), and GPx activity (
P = 0.00 for Pro/Pro,
P < 0.00001 for Pro/Leu,
P < 0.001 for Leu/Leu). In addition, the Pro/Pro group showed a decrease in DNA damage after Brazil nut consumption compared with baseline (
P < 0.005), and those levels were higher in Leu/Leu subjects compared with those with the wild-type genotype (
P < 0.05).
Consumption of one unit of Brazil nuts daily effectively increases Se status and increases GPx activity in obese women, regardless of GPx1 Pro198Leu polymorphism. However, the evaluated biomarkers showed distinct results in response to the supplementation when the polymorphism was considered.
Journal Article
Intake of Red Wine in Different Meals Modulates Oxidized LDL Level, Oxidative and Inflammatory Gene Expression in Healthy People: A Randomized Crossover Trial
2014
Several studies have found that adherence to the Mediterranean Diet, including consumption of red wine, is associated with beneficial effects on oxidative and inflammatory conditions. We evaluate the outcome of consumption of a McDonald’s Meal (McD) and a Mediterranean Meal (MM), with and without the additive effect of red wine, in order to ascertain whether the addition of the latter has a positive impact on oxidized (ox-) LDL and on expression of oxidative and inflammatory genes. A total of 24 subjects were analyzed for ox-LDL, CAT, GPX1, SOD2, SIRT2, and CCL5 gene expression levels, before and after consumption of the 4 different meal combinations with washout intervals between each meal. When red wine is associated with McD or MM, values of ox-LDL are lowered ( P < 0 . 05 ) and expression of antioxidant genes is increased, while CCL5 expression is decreased ( P < 0 . 05 ). SIRT2 expression after MM and fasting with red wine is significantly correlated with downregulation of CCL5 and upregulation of CAT ( P < 0 . 001 ). GPX1 increased significantly in the comparison between baseline and all conditions with red wine. We highlighted for the first time the positive effect of red wine intake combined with different but widely consumed meal types on ox-LDL and gene expression. Trial Registration. This protocol has been registered with ClinicalTrials.gov ID: NCT01890070.
Journal Article
Association of SOD2, GPX1, CAT, and TNF Genetic Polymorphisms with Oxidative Stress, Neurochemistry, Psychopathology, and Extrapyramidal Symptoms in Schizophrenia
2013
There is a growing body of evidence confirming the involvement of oxidative stress and inflammation in pathogenesis of schizophrenia. Inter-individual variation in antioxidant capacity caused by different genetic profile could potentially influence patient’s susceptibility to oxidative damage. In this study we evaluated the polymorphisms of manganese superoxide dismutase
SOD2
Val16Ala, glutathione peroxidase
GPX1
Pro200Leu, catalase
CAT
-262C>T and
CAT
c.66+78C>T, and tumour necrosis factor-alpha
TNF
-308G>A by assessing their association with biomarkers of oxidative stress, neurochemistry, psychopathology of schizophrenia and extrapyramidal symptoms in Caucasian schizophrenia patients treated with haloperidol depot.
TNF
-308G>A was associated with the increased risk of parkinsonism. No major role of polymorphism of
SOD2
Val16Ala,
CAT
-262C>T nor
GPX1
Pro200Leu in psychopathology of schizophrenia or extrapyramidal symptoms was observed.
SOD2
Val16Ala polymorphism was associated with dopamine plasma concentration and blood concentration ratio between reduced and oxidised form of glutathione, while
GPX1
Pro200Leu was related with concentration of reduced glutathione.
CAT
c.66+78C>T was associated with noradrenaline plasma concentration and PANSS negative score. PANSS positive and general scores, were associated with the increased risk of tardive dyskinesia. PANSS positive, negative, and general scores, and GAF score were all associated with the increased risk of akathisia.
Journal Article
GPX3 methylation is associated with hematologic improvement in low-risk myelodysplastic syndrome patients treated with Pai-Neng-Da
2020
Objective
The aim of this prospective randomized controlled clinical trial was to explore the relationship between GPX3 methylation and Pai-Neng-Da (PND) in the treatment of patients with low-risk myelodysplastic syndrome (MDS).
Methods
There were 82 low-risk MDS patients who were randomly divided into the following two groups: androl, thalidomide, and PND capsule (ATP group, n = 41); or androl and thalidomide (AT group, n = 41). Hemoglobin and neutrophil and platelet counts and changes in GPX3 methylation level were assessed.
Results
The plasma hemoglobin level increased in both groups after treatment. However, the platelet count increased only in the ATP group. Patients in the ATP group had a better platelet response than the AT group, and GPX3 methylation markedly decreased after treatment with ATP but not after treatment with AT. Moreover, male patients had a significantly lower GPX3 methylation level than female patients, while platelet counts from male patients increased dramatically after the ATP regimens compared with female patients. GPX3 methylation changes were negatively correlated with platelet changes in ATP group.
Conclusion
PND can improve hematological parameters and decrease the GPX3 methylation level. Decreasing GPX3 methylation is associated with the hematologic response that includes platelet in GPX3 methylation.
China Clinical Trial Bureau (ChiCTR; http://www.chictr.org.cn/) registration number: ChiCTR-IOR-15006635.
Journal Article
Antioxidant Function and Metabolomics Study in Mice after Dietary Supplementation with Methionine
by
Zou, Leqin
,
Chen, Hui
,
Liu, Pan
in
Aminoisobutyric Acids - metabolism
,
Analysis
,
Animal experimentation
2020
The antioxidant function and metabolic profiles in mice after dietary supplementation with methionine were investigated. The results showed that methionine supplementation enhanced liver GSH-Px activity and upregulated Gpx1 expression in the liver and SOD1 and Gpx4 expressions in the jejunum. Nrf2/Keap1 is involved in oxidative stress, and the western blotting data exhibited that dietary methionine markedly increased Keap1 abundance, while failed to influence the Nrf2 signal. Metabolomics investigation showed that methionine administration increased 2-hydroxypyridine, salicin, and asparagine and reduced D-Talose, maltose, aminoisobutyric acid, and inosine 5’-monophosphate in the liver, which are widely reported to involve in oxidative stress, lipid metabolism, and nucleotides generation. In conclusion, our study provides insights into antioxidant function and liver metabolic profiles in response to dietary supplementation with methionine.
Journal Article