Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7,647 result(s) for "Glycine (amino acid)"
Sort by:
Stereoselective amino acid synthesis by photobiocatalytic oxidative coupling
Photobiocatalysis—where light is used to expand the reactivity of an enzyme—has recently emerged as a powerful strategy to develop chemistries that are new to nature. These systems have shown potential in asymmetric radical reactions that have long eluded small-molecule catalysts 1 . So far, unnatural photobiocatalytic reactions are limited to overall reductive and redox-neutral processes 2 – 9 . Here we report photobiocatalytic asymmetric sp 3 – sp 3 oxidative cross-coupling between organoboron reagents and amino acids. This reaction requires the cooperative use of engineered pyridoxal biocatalysts, photoredox catalysts and an oxidizing agent. We repurpose a family of pyridoxal-5′-phosphate-dependent enzymes, threonine aldolases 10 – 12 , for the α-C–H functionalization of glycine and α-branched amino acid substrates by a radical mechanism, giving rise to a range of α-tri- and tetrasubstituted non-canonical amino acids 13 – 15 possessing up to two contiguous stereocentres. Directed evolution of pyridoxal radical enzymes allowed primary and secondary radical precursors, including benzyl, allyl and alkylboron reagents, to be coupled in an enantio- and diastereocontrolled fashion. Cooperative photoredox–pyridoxal biocatalysis provides a platform for sp 3 – sp 3 oxidative coupling 16 , permitting the stereoselective, intermolecular free-radical transformations that are unknown to chemistry or biology. We report on the oxidative cross-coupling of organoboron reagents and amino acids via pyridoxal biocatalysis to produce non-canonical amino acids, uncovering stereoselective, intermolecular free-radical transformations.
Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids
Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.
Antioxidative, Anti-Inflammatory, and Anti-Aging Properties of Mycosporine-Like Amino Acids: Molecular and Cellular Mechanisms in the Protection of Skin-Aging
Prolonged exposure to ultraviolet (UV) radiation causes photoaging of the skin and induces a number of disorders, including sunburn, fine and coarse wrinkles, and skin cancer risk. Therefore, the application of sunscreen has gained much attention to reduce the harmful effects of UV irradiation on our skin. Recently, there has been a growing demand for the replacement of chemical sunscreens with natural UV-absorbing compounds. Mycosporine-like amino acids (MAAs), promising alternative natural UV-absorbing compounds, are a group of widely distributed, low molecular-weight, water-soluble molecules that can absorb UV radiation and disperse the absorbed energy as heat, without generating reactive oxygen species (ROS). More than 30 MAAs have been characterized, from a variety of organisms. In addition to their UV-absorbing properties, there is substantial evidence that MAAs have the potential to protect against skin aging, including antioxidative activity, anti-inflammatory activity, inhibition of protein-glycation, and inhibition of collagenase activity. This review will provide an overview of MAAs, as potential anti-aging ingredients, beginning with their structure, before moving on to discuss the most recent experimental observations, including the molecular and cellular mechanisms through which MAAs might protect the skin. In particular, we focus on the potential anti-aging activity of mycosporine-2-glycine (M2G).
Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets
We analyzed the composition of amino acids (AAs) in oligopeptides, proteins, and the free pool, as well as creatine, agmatine, polyamines, carnosine, anserine, and glutathione, in animal- and plant-derived feedstuffs. Ingredients of animal origins were black soldier fly larvae meal (BSFM), chicken by-product meal, chicken visceral digest, feather meal, Menhaden fishmeal, Peruvian anchovy fishmeal, Southeast Asian fishmeal, spray-dried peptone from enzymes-treated porcine mucosal tissues, poultry by-product meal (pet-food grade), spray-dried poultry plasma, and spray-dried egg product. Ingredients of plant origins were algae spirulina meal, soybean meal, and soy protein concentrate. All animal-derived feedstuffs contained large amounts of all proteinogenic AAs (particularly glycine, proline, glutamate, leucine, lysine, and arginine) and key nonproteinogenic AAs (taurine and 4-hydroxyproline), as well as significant amounts of agmatine, polyamines, creatine, creatinine, creatine phosphate, and glutathione. These nitrogenous substances are essential to either DNA and protein syntheses in cells or energy metabolism in tissues (particularly the brain and skeletal muscle). Of note, chicken by-product meal, poultry by-product meal, and spray-dried poultry plasma contained large amounts of carnosine and anserine (potent antioxidants). Compared with most of the animal-derived feedstuffs, plant-derived feedstuffs contained much lower contents of glycine and proline, little 4-hydroxyproline, and no creatine, creatinine, creatine phosphate, carnosine or anserine. These results indicate the unique importance of animal-source feedstuffs in improving the feed efficiency, growth and health of animals (including fish and companion animals). Because soy protein concentrate is consumed by infants, children and adults, as are BSFM and algae for children and adults, our findings also have important implications for human nutrition.
Glycine metabolism in animals and humans: implications for nutrition and health
Glycine is a major amino acid in mammals and other animals. It is synthesized from serine, threonine, choline, and hydroxyproline via inter-organ metabolism involving primarily the liver and kidneys. Under normal feeding conditions, glycine is not adequately synthesized in birds or in other animals, particularly in a diseased state. Glycine degradation occurs through three pathways: the glycine cleavage system (GCS), serine hydroxymethyltransferase, and conversion to glyoxylate by peroxisomal d-amino acid oxidase. Among these pathways, GCS is the major enzyme to initiate glycine degradation to form ammonia and CO2 in animals. In addition, glycine is utilized for the biosynthesis of glutathione, heme, creatine, nucleic acids, and uric acid. Furthermore, glycine is a significant component of bile acids secreted into the lumen of the small intestine that is necessary for the digestion of dietary fat and the absorption of long-chain fatty acids. Glycine plays an important role in metabolic regulation, anti-oxidative reactions, and neurological function. Thus, this nutrient has been used to: (1) prevent tissue injury; (2) enhance anti-oxidative capacity; (3) promote protein synthesis and wound healing; (4) improve immunity; and (5) treat metabolic disorders in obesity, diabetes, cardiovascular disease, ischemia-reperfusion injuries, cancers, and various inflammatory diseases. These multiple beneficial effects of glycine, coupled with its insufficient de novo synthesis, support the notion that it is a conditionally essential and also a functional amino acid for mammals (including pigs and humans).
Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress
Background Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress. Results We isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress. Conclusion The current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic.
Amino Acid Availability of a Dairy and Vegetable Protein Blend Compared to Single Casein, Whey, Soy, and Pea Proteins: A Double-Blind, Cross-Over Trial
Protein quality is important for patients needing medical nutrition, especially those dependent on tube feeding. A blend of dairy and vegetable proteins (35% whey, 25% casein, 20% soy, 20% pea; P4) developed to obtain a more balanced amino acid profile with higher chemical scores, was compared to its constituent single proteins. Fourteen healthy elderly subjects received P4, whey, casein, soy, and pea (18 g/360 mL bolus) on five separate visits. Blood samples were collected at baseline until 240 min after intake. Amino acid availability was calculated using incremental maximal concentration (iCmax) and area under the curve (iAUC). Availability for P4 as a sum of all amino acids was similar to casein (iCmax and iAUC) and whey (iCmax) and higher vs. soy (iCmax and iAUC) and pea (iCmax). Individual amino acid availability (iCmax and iAUC) showed different profiles reflecting the composition of the protein sources: availability of leucine and methionine was higher for P4 vs. soy and pea; availability of arginine was higher for P4 vs. casein and whey. Conclusions: The P4 amino acid profile was reflected in post-prandial plasma levels and may be regarded as more balanced compared to the constituent single proteins.
Structure-activity relationship of amino acid analogs to probe the binding pocket of sodium-coupled neutral amino acid transporter SNAT2
The sodium-coupled neutral amino acid transporter SNAT2 (SLC38A2) has been shown to have important physiological functions and is implicated in various diseases like cancer. However, few compounds targeting this transporter have been identified and little is known about the structural requirements for SNAT2 binding. In this study, the aim was to establish the basic structure-activity relationship for SNAT2 using amino acid analogs. These analogs were first studied for their ability to inhibit SNAT2-mediated 3H-glycine uptake in hyperosmotically treated PC-3 cells. Then to identify substrates a FLIPR membrane potential assay and o-phthalaldehyde derivatization of intracellular amino with subsequent quantification using HPLC-Fl was used. The results showed that ester derivatives of the C-terminus maintained SNAT2 affinity, suggesting that the negative charge was less important. On the other hand, the positive charge at the N-terminus of the substrate and the ability to donate at least two hydrogen bonds to the binding site appeared important for SNAT2 recognition of the amine. Side chain charged amino acids generally had no affinity for SNAT2, but their non-charged derivatives were able to inhibit SNAT2-mediated 3H-glycine uptake, while also showing that amino acids of a notable length still had affinity for SNAT2. Several amino acid analogs appeared to be novel substrates of SNAT2, while γ-benzyl L-glutamate seemed to be inefficiently translocated by SNAT2. Elaborating on this structure could lead to the discovery of non-translocated inhibitors of SNAT2. Thus, the present study provides valuable insights into the basic structural binding requirements for SNAT2 and can aid the future discovery of compounds that target SNAT2.
Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice
Summary Amino acid transporters (AATs) play indispensable roles in nutrient allocation during plant development. In this study, we demonstrated that inhibiting expression of the rice amino acid transporter OsAAP3 increased grain yield due to a formation of larger numbers of tillers as a result of increased bud outgrowth. Elevated expression of OsAAP3 in transgenic plants resulted in significantly higher amino acid concentrations of Lys, Arg, His, Asp, Ala, Gln, Gly, Thr and Tyr, and inhibited bud outgrowth and rice tillering. However, RNAi of OsAAP3 decreased significantly Arg, Lys, Asp and Thr concentrations to a small extent, and thus promoted bud outgrowth, increased significantly tiller numbers and effective panicle numbers per plant, and further enhanced significantly grain yield and nitrogen use efficiency (NUE). The promoter sequences of OsAAP3 showed some divergence between Japonica and Indica rice, and expression of the gene was higher in Japonica, which produced fewer tillers than Indica. We generated knockout lines of OsAAP3 on Japonica ZH11 and KY131 using CRISPR technology and found that grain yield could be increased significantly. These results suggest that manipulation of OsAAP3 expression could be used to increase grain yield in rice.
Glutamate as a therapeutic target in psychiatric disorders
Glutamate is the primary excitatory neurotransmitter in the mammalian brain. Glutamatergic neurotransmission may be modulated at multiple levels, only a minority of which are currently being exploited for pharmaceutical development. Ionotropic receptors for glutamate are divided into N -methyl- D -aspartate receptor (NMDAR) and AMPA receptor subtypes. NMDAR have been implicated in the pathophysiology of schizophrenia. The glycine modulatory site of the NMDAR is currently a favored therapeutic target, with several modulatory agents currently undergoing clinical development. Of these, the full agonists glycine and D -serine have both shown to induce significant, large effect size reductions in persistent negative and cognitive symptoms when added to traditional or newer atypical antipsychotics in double-blind, placebo-controlled clinical studies. Glycine (GLYT1) and small neutral amino-acid (SNAT) transporters, which regulate glycine levels, represent additional targets for drug development, and may represent a site of action of clozapine. Brain transporters for D -serine have recently been described. Metabotropic glutamate receptors are positively (Group I) or negatively (Groups II and III) coupled to glutamatergic neurotransmission. Metabotropic modulators are currently under preclinical development for neuropsychiatric conditions, including schizophrenia, depression and anxiety disorders. Other conditions for which glutamate modulators may prove effective include stroke, epilepsy, Alzheimer disease and PTSD.